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a b s t r a c t 

Negative emotions play a dominant role in daily human life, and mentalizing and empathy are also basic socia- 

bility in social life. However, little is known regards the neurophysiological pattern of negative experiences in 

immersive environments and how people with different sociabilities respond to the negative emotional stimuli 

at behavioral and neural levels. The present study investigated the neurophysiological representation of negative 

affective experiences and whether such variations are associated with one’s sociability. To address this question, 

we examined four types of negative emotions that frequently occurred in real life: angry, anxious, fearful, and 

helpless. We combined naturalistic neuroimaging under virtual reality, multimodal neurophysiological recording, 

and behavioral measures. Inter-subject representational similarity analysis was conducted to capture the individ- 

ual differences in the neurophysiological representations of negative emotional experiences. The behavioral and 

neurophysiological indices revealed that although the emotion ratings were uniquely different, a similar elec- 

troencephalography response pattern across these negative emotions was found over the parieto-occipital elec- 

trodes. Furthermore, the neurophysiological representations indeed reflected interpersonal variations regarding 

mentalizing and empathic abilities. Our findings yielded a common pattern of neurophysiological responses to- 

ward different negative affective experiences in VR. Moreover, the current results indicate the potential of taking 

a sociability perspective for understanding the interpersonal variations in the neurophysiological representation 

of emotion. 
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. Introduction 

Emotion plays a dominant role in daily human social function

 Tyng et al., 2017 ; Keltner and Kring, 1998 ; Cacioppo and Gard-

er, 1999 ), and humans spend most of their time pursuing positive

motional experiences or avoiding negative ones ( Delgado et al., 2009 ).

rom the fundamental level ( Ekman and Davidson, 1994 ), researchers

ave been dedicated to examining the nature and classification of

motion and understanding emotion from the basic perceptual and

ognitive perspective ( Adolphs, 2002 ; Kragel and LaBar, 2016 ). The

asic emotion theory holds that certain emotions are unique, indivisible

xperiences that are innate and universal across cultures (e.g., anger,

isgust, fear, happiness, sadness, and surprise) ( Russell et al., 2017 ).

urthermore, evidence shows that emotional categories can be mapped

nto certain biological and psychological domains and connected with

istinct neurophysiological representations ( Ekman and Cordaro, 2011 ;

racy and Randles, 2011 ). However, there is a large inter-individual

ifference between social groups, or in emotion production, even when

he same emotional stimuli are presented ( Hu et al., 2021 ). Particu-
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arly, for negative emotions, there is an argument that they are more

alient in the cognitive process and exhibit larger individual variations

 Adolphs, 2002 ; Tyng et al., 2017 ). One study shows that negative emo-

ional experiences synchronize neural activities across subjects, which

urther promotes social interaction ( Nummenmaa et al., 2012 ). Specif-

cally, those negative feelings or emotions that frequently occurred in

eal life (e.g., angry, anxious, fearful, and helpless), and influence our

ormal functioning and social life ( Feldman Barrett and Russell, 1998 ;

ezlek and Kuppens, 2008 ). Since there are various negative feelings

n real life, an interesting question is raised, as to whether variations

n negative emotional representations are associated with human

ehavioral and neurophysiological responses in real-world settings. 

In addition to emotion, mentalizing and empathy are closely linked

o social interaction ( Majdand ̌zi´c et al., 2016 ; Hooker et al., 2008 ),

hich also constitute individual differences. Mentalizing is essential for

ocial function, and optimal social decision-making and responses are

ighly dependent on the accurate perception and prediction of the emo-

ional states of others ( Frith and Frith, 2006 ). Especially in aversive con-

itions, from inferring the negative feelings of others from witnessing
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st 2022 

article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2022.119596
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2022.119596&domain=pdf
mailto:haiyanwu@um.edu.mo
https://doi.org/10.1016/j.neuroimage.2022.119596
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Wang, R. Yu, Y. Tian et al. NeuroImage 263 (2022) 119596 

t  

p  

c  

(  

i  

m  

a  

fi  

c  

c  

f  

t  

t  

T  

t  

r  

m  

e  

t  

d  

c  

p  

(

 

t  

A  

p  

a  

2  

t  

v  

c  

i  

c  

t

 

c  

t  

m  

a  

a  

s  

r  

2  

e  

w  

H  

t  

t  

s  

i  

r  

s  

i  

o  

d  

(

 

t  

t  

v  

u  

r  

t  

t  

v  

P  

f  

i  

i  

g

 

(  

s  

e  

2  

t  

f  

i  

s  

l  

d  

t  

s  

i  

t  

t  

V  

d

 

b  

a  

n  

i  

2  

R  

p  

t  

m  

r  

t  

t  

e  

f  

a

 

w  

r  

m  

r  

e  

v  

o  

n  

e  

i  

u  

s  

e  

i  

s  

s

2

2

2  

c  

h  

p  
heir suffering or distress, empathy and prosocial behaviors would be

roduced, such as altruistic behaviors ( Batson et al., 1987 ). In this pro-

ess, mentalizing is a critical ability, especially during social interactions

 Wu et al., 2020 ). Wu et al. developed a measure for different mental-

zing components in social interaction: self-self mentalizing, other-self

entalizing, and self-other mentalizing ( Wu et al., 2022 ). Empathy, neg-

tive emotion recognition, and sharing require self-other mentalizing

rst, and people would show instinct prosocial willingness if the per-

eived agent is vulnerable. Furthermore, mentalizing and empathy are

onceptually related in terms of social cognitive processes and social

unctioning, while evidence from social neuroscience has revealed a dis-

inct neural network that supports these constructs. Specifically, men-

alizing has been recognized as a socio-cognitive process ( Singer and

usche, 2014 ). In the mentalizing process, the temporal-parietal junc-

ion (TPJ), superior temporal sulcus (STS), temporal pole (TP), poste-

ior cingulate cortex (PCC), and medial prefrontal cortex (MPFC) are

ainly involved in inferring the thoughts, actions, and intentions of oth-

rs ( Kanske et al., 2015 ; Schurz et al., 2021 ; Bzdok et al., 2012 ). Empa-

hy focuses on the socio-affective process ( Singer and Tusche, 2014 ). A

istinct brain network that consists of the anterior insula (AI), anterior

ingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC) sup-

orts the understanding and the sharing of the affective states of others

 Preckel et al., 2018 ; Kanske et al., 2015 ; Singer and Lamm, 2009 ). 

Meanwhile, large individual differences have been found in men-

alizing ability and trait empathy ( Davis, 1983a , 1983b ; Kliemann and

dolphs, 2018 ; Li et al., 2022 ). Previous studies have shown that peo-

le with similar personality traits may produce similar understating

nd neurophysiological responses toward social stimuli ( van Baar et al.,

021 ; Bacha-Trams et al., 2018 ). While on the other hand, these varia-

ions in personality and sociability may also significantly induce great

ariations of negative emotion perception and representation in the so-

ial context ( Chen et al., 2020 ; Gruskin et al., 2020 ). Therefore, it is of

nterest to further investigate whether mentalizing and trait empathy

ontributes to the variations in negative emotional representations and

heir association with neurophysiological responses. 

In the last few decades, multiple neuroimaging methods and psy-

hophysiological recording methods have been used to study emo-

ional responses. Most of the neuroscience studies utilized functional

agnetic resonance imaging (fMRI) and electroencephalography (EEG)

s neural signals that respond to different emotional states. For ex-

mple, fMRI studies have examined and summarized the neural sub-

trate that represents emotion and generates and regulates emotional

esponse ( Sievers et al., 2021 ; Wager et al., 2008a , 2008b ; McRae et al.,

008 ). These studies significantly advance our understanding of the

motion-related neural mechanism. Apart from fMRI, EEG has also been

idely used in different emotional states ( Nummenmaa et al., 2012 ;

u et al., 2017 ; Ding et al., 2018 ). Meanwhile, in addition to the ac-

ivity of the central nervous system (CNS), the autonomic nervous sys-

em (ANS) indices are also involved in emotional responses, including

kin conductance level (SCL), heart rate (HR), and heart rate variabil-

ty (HRV) ( Fernández et al., 2012 ; Quintana et al., 2012 ), as summa-

ized by Kreibig (2010) . When it comes to decoding others’ emotional

tates, psychophysiological and neural responses are almost irrepress-

bly engaged in computing. Individuals share extensive similarities with

thers in their neural responses to emotions and also show individual

ifferences in physiological and neural responses to emotional stimuli

 Nguyen et al., 2019 ; Pérez et al., 2021 ). 

However, most previous emotion research employed static emo-

ional facial expressions, emotional arousing scenes, or objects to probe

he psychophysiological and neural responses. To provide ecologically

alid, realistic, and dynamic negative emotional experiences to individ-

als, it is necessary to utilize the emerging method of naturalistic neu-

oimaging to study the corresponding brain states. Specifically, in con-

rast to conventional highly-controlled tasks, a natural neural response

o dynamic stimuli is induced by naturalistic paradigms such as movie

iewing or narrative listening ( Chang et al., 2021 ; Gruskin et al., 2020 ).
2 
revious studies indicated that movie viewing would robustly induce

unctional brain states ( van der Meer et al., 2020 ; Tan et al., 2022 ). Ev-

dence shows that emotion-driven attention effects are more prominent

n naturalistic settings ( Kulke and Pasqualette, 2022 ), which further sug-

ests the utility of the naturalistic paradigm in affective research. 

In addition to utilizing various naturalistic materials, virtual reality

VR) techniques are also emerging in the fields of cognitive and affective

cience. Previous studies have revealed that VR elicits emotions more

fficiently than the classical methods ( Baños et al., 2006 ; Riva et al.,

007 ). Such an advantage especially benefits negative emotion elici-

ation, where VR offers an immersive multisensory environment that

acilitates reliable emotions. Therefore, VR provides a new solution for

mproving ecological validity ( Susindar et al., 2019 ). Negative emotions

uch as fear, anger, and helplessness are difficult to induce in standard

aboratory settings. For example, one recent study used VR for fear con-

itioning ( Faul et al., 2020 ), and another also combined EEG and VR

o decode emotional arousal ( Hofmann et al., 2021 ). Existing evidence

howed mixed results on whether there are larger individual variations

n negative emotions, which may have two limitations: (1) the approach

o elicit natural negative emotions, and (2) the simultaneous validity of

he body or brain signals. Thus, it is plausible and promising to leverage

R as a platform for the naturalistic paradigm and provide subjects with

ynamic negative experiences in an immersive way. 

Nevertheless, given the complex nature of human emotion, socia-

ility, and the method of naturalistic neuroimaging, how can we ex-

mine and quantify the shared response and individual variations in

egative feelings, from behavioral to neurophysiological response? The

nter-subject representational similarity analysis (IS-RSA) ( Finn et al.,

020 ; Nguyen et al., 2019 ), with the second-order statistical akin to

SA, can cast a new light on this issue. By leveraging IS-RSA, the neuro-

hysiological representation of the individual differences in behavioral

raits can be obtained by associating the similarity matrices of different

odalities. In the last decade, IS-RSA has been used to explore the neural

epresentations that reflect interpersonal variation in narrative interpre-

ation ( Nguyen et al., 2019 ), affective experiences ( Chen et al., 2020 ),

rait paranoia ( Finn et al., 2018 ), and even moral decisions ( van Baar

t al., 2019 ). Thus, we used the IS-RSA to explore how individual dif-

erences in mentalizing and sociability impact the inter-individual vari-

tions among the negative emotions in the VR experience. 

To our knowledge, rare research has investigated the experiences

ith ANS and CNS responses to negative emotions experienced in a natu-

alistic context. Based on the variety of negative emotions and emerging

ethods of naturalistic neuroimaging, the current study aimed to: (1)

eveal the common neurophysiological responses to negative emotional

xperiences, and further (2) examine the relationship between the indi-

idual difference in mentalizing ability, trait empathy, and neurophysi-

logical representation of negative emotional experiences. To probe the

ature of emotional experiences systematically, we used VR to elicit

motional experiences, combined with the multi-modal neurophysiolog-

cal recordings from both the ANS and CNS. Our first hypothesis is that,

nder different negative emotional experiences, people would produce

imilar or shared responses from behavioral to neurophysiological lev-

ls. Based on the shared responses, we further hypothesized that the

ndividual variations in mentalizing ability and empathy would be as-

ociated and reflected by the similarity of EEG and ECG responses. The

tructure of the current study is illustrated in Fig. 1 . 

. Methods 

.1. Participants 

There were 42 right-handed students (31 female, age range: 19–

4, mean age = 21.74 ± 2.19 years) from the University of Macau re-

ruited through an online recruitment advertisement. No participants

ad a history of mental health or neurological disorders. All partici-

ants signed an informed consent form before the experiments. This
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Fig. 1. Illustration of the structure of the 

current study. The current study combined 

neural recording, physiological and behavioral 

measurements to probe the individual varia- 

tions of the neurophysiological representation 

of negative emotion. The first stage of analy- 

sis is the intersubject correlation (ISC) analy- 

sis, which aimed to construct the intersubject 

similarity matrices of neurophysiological rep- 

resentation and sociability. Furthermore, based 

on the ISC analysis, the second stage analysis 

was the intersubject representational similar- 

ity analysis (IS-RSA), which bridged the neu- 

rophysiological representation and sociability 

to examine the individual variations. Note: 

ISC = intersubject correlation, IS-RSA = inter- 

subject representational similarity analysis. 
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tudy was approved by the local ethics committee of the University of

acau (BSERE21-APP006-ICI). 

.2. Psychological scales 

Participants were required to complete two psychological scales be-

ore experiments. Based on our hypothesis, we used the interactive men-

alizing questionnaire (IMQ) ( Wu et al., 2022 ) and the interpersonal

eactivity index (IRI) ( Davis, 1983b ) to measure the capacity for men-

alizing and empathy. The IMQ scale was constructed based on the inter-

ctive theory of mentalizing and divided into three subscales: inference

f the mental state of others (SO: self-other), meta-cognition (SS: self-

elf), and meta-mentalization (OS: other-self). Meanwhile, the IRI scale,

hich is widely used to measure individual differences in trait empathy

nd consists of four domains: (1) perspective taking (PT) which scale

ssesses the tendency to spontaneously adopt the psychological point

f view of others; (2) fantasy (FS) which tends to transpose themselves

maginatively into the feelings and actions of fictitious characters; (3)

mpathic concern (EC) scale which assesses “other-oriented ” feelings of

ympathy and concern for unfortunate others; (4) personal distress (PD)

cale which measuring “self-oriented ” feeling of personal anxiety and

ense interpersonal settings. In particular, to support the hypothesis, the

SO ” subscale within the IMQ and the EC IRI were mainly addressed in

his study. In addition, the PT within the IRI was included in the analysis

s a complementary measure of sociability. 

.3. Emotional video materials 

Twelve video clips were selected that aimed to induce four target

egative emotion states: angry, anxious, fearful, and helpless. We also

ncluded three happy video clips as a control condition. 

For materials selection, we first constructed a dataset of movies as

andidates for the further formal experiment. We then recruited 40 part-

ipants through an online advertisement to select movie clips for the ex-

eriment from the dataset; there were three criteria for selection: (1) the

uration being about 3 min long; (2) the clip to be easy to understand

nd not needing supplementary explanation; (3) the clip should elicit

ingle dominant emotional experiences. They were also required to rate

he emotional intensity of the clips and give the score on a 4-point Likert

cale (0 = not strong at all - 3 = very strong). For each emotion condition

angry, anxious, fearful, helpless, and happy), the top three clips with

he highest rating score were selected for the experiment. These emo-

ional video clips were mainly selected from movies and series, and the

ource of the movies was included in the supplementary information. 
3 
Furthermore, to confirm the emotional elicitation, we also recruited

nother five individuals (3 males and 2 females) to rate the negative

motional arousal and annotate the excerpts of 20 s that elicited the

ost intense emotional experiences. Only the clips and annotations that

ere recognized by all volunteers were used in the formal experiments.

his is because we aimed to analyze the neurophysiological response

hen participants experience the most intense or strong emotional feel-

ng. 

.4. Naturalistic viewing task under VR & experimental setup 

We displayed all the video clips under VR to elicit immersive emo-

ional experiences. In the formal experiment, participants were first in-

tructed to be seated and wear the EEG electrodes and attached the ECG

lectrodes before wearing the VR head-mounted display goggles (Vive

ye pro, HTC Corporation) (Fig. S1 B). The experimenter then adjusted

he focal length of the goggles and the position of the headphone to en-

ure that the participants had a clear view of the virtual environment

nd could hear the sound. During the experiment, the head movements

ere tracked with infrared lights, accelerometry, and gyroscopy to make

ure that the playing environment would move along with the head for

mmersive experiences. The ECG and EEG data were collected simulta-

eously from all subjects ( Fig. 2 ). 

In the experiment, the fifteen video clips were presented to the par-

icipants, and the viewing sequence was identical for all participants.

pecifically, after viewing each video clip, participants were instructed

o report their emotional arousal ratings based on a 4-point scale. The

articipant would have a rest for at least 30 s before watching the next

ideo to recover to the baseline state and minimize the intertwined emo-

ions. This procedure was adopted following the common practice of

ffective research leveraged EEG and naturalistic viewing ( Masood and

arooq, 2021 ; Hu et al., 2021 ; Hofmann et al., 2021 ). In the case where

0 s was not long enough, participants would have a longer rest until

hey perceived themselves as ready for the next video. 

The 3-dimensional VR playing environment was programmed on the

nity platform, which is a powerful integrated platform for 3D and VR

evelopment. The Unity platform communicated with the goggles em-

loying Steam VR. In terms of the playing environment in the current

tudy, a curved screen was built in the virtual environment with an im-

ersive surrounding experience during movie viewing (Fig. S1. A). Dur-

ng the formal experiment, all movie clips were projected onto a built

urved screen with high resolution. In the formal experiment, to mini-

ize the interference of light, the playing environment was completely

ark except for the curved screen. Meanwhile, it is also noteworthy that
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Fig. 2. Naturalistic viewing task and ex- 

traction of time course data . All participants 

watched the video clips in the same playing se- 

quence in the VR. Specifically, there were three 

clips within each emotion condition. EEG and 

ECG data were acquired simultaneously from 

all subjects and the original time course data 

were obtained. Furthermore, for each video 

clip, only the 20 s that elicited the most intense 

emotional experiences was extracted from the 

original data; and these time course data of 20 s 

were averaged within each emotion condition. 

This procedure was conducted for all emotion 

conditions and both EEG and ECG data. 
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t  

w  
e used an embedded Python script ( https://github.com/andlab-um/

motion _ EEG ) in the Unity program for sending marks to the EEG and

CG hardware for synchronization. 

.5. Emotion rating 

All participants were instructed to evaluate the emotional intensity

f the four types of negative emotion after each view. This intensity

core aims to: (1) ensure their engagement in the movie viewing and

2) prove the reliability of the clips with regards to emotion elicitation.

his rating was also based on a 4-point Likert scale (0 = not strong at all

 3 = very strong). To further confirm that the selected videos evoked the

arget emotion at the behavioral level among all participants, all scores

ere compared within each negative emotion category. Specifically, the

epeated measure analysis of variance (rmANOVA) and post-hoc paired

 -test were used to examine the differences in the intensity score. 

.6. ECG recording and processing 

The ECG signals were obtained using BIOPAC MP160 (BIOPAC,

SA), with an acquisition sampling rate of 2000 Hz. For data process-

ng, the Python package Neurokit2 ( Makowski et al., 2021 ) was used to

onduct the data preprocessing and feature extraction. 

The raw ECG signal was first resampled to 250 Hz, and the signal

oise was removed by employing the default Neurolit2 method, which

as followed by the location of the cardiac peaks. After preprocessing

he ECG signal and cardiac peaks’ location, the function ecg_rate was

sed to compute the heart rate based on the peaks of the cleaned ECG

ata. As for HRV calculation, the indices of the cardiac peaks (R peaks)

erived from the cleaned ECG data were utilized to calculate the HRV

eatures through the function hrv_time in Neurokit2 package. 

In the current study, the HRV features in the time domain were used

or further ISC and IS-RSA analysis. Specifically, two time-domain fea-

ures were used: (1) the mean of the interval between cardiac peaks (RR

nterval: MeanNN), (2) and the standard deviation of the interval be-

ween cardiac peaks (SD of RR interval: SDNN). The time-domain fea-

ures can reflect the total variability of HR, which are commonly re-

orted as physiological indices in affective and psychological research

 Pham et al., 2021 ). In detail, researchers have used time-domain fea-

ures to examine the distinction between happy and sad emotional

tates ( Shi et al., 2017 ). Time-domain features have been used in ma-

hine learning algorithms for emotion recognition ( Guo et al., 2016 ;

alderas et al., 2015 ). 
4 
.7. EEG recording 

EEG signals were acquired from 64-channel Ag/AgCl electrodes (ac-

iCap, BrainAmp; Brain Products) placed on the scalp of the participants

ollowing the 10/20 system with the impedance of 10 k Ω or less. The

eural electrical activity was recorded with a bandpass of 0.01–100 Hz

nd a sampling rate of 1000 Hz. An electrode placed on the forehead

AFz) was used as the ground and another electrode placed on the mid-

rontal (FCz) was used as the reference during the recording. Partici-

ants were instructed to minimize their head and body movements dur-

ng the whole experimental procedure. 

.8. EEG data preprocessing 

The EEG data were preprocessed offline by using the EEGLAB tool-

ox ( Delorme and Makeig, 2004 ). Data was first downsampled to 250 Hz

or further analysis, then filtered with a high-pass filter of 1 Hz, and

 low-pass 50 Hz filter ( Hu et al., 2017 , 2021 ; Winkler et al., 2015 ).

urthermore, cleanrawdata plug-in of EEGLAB was used for bad chan-

el detection and removal. As for the detailed parameters setting, the

aximum flatline duration was set to 5 s, the line noise criterion was

et to 4 standard deviations, and the minimum acceptable correlation

ith nearby channels was set to 0.8 ( Mullen et al., 2015 ;Chen et al.,

022 ). After the bad channel removal, all the removed channels were

nterpolated by using the spherical method. Then, all the channels were

eferenced to the average reference ( Maffei et al., 2020 ). 

To further minimize the artifacts, the Artifact Subspace Re -

onstruction (ASR) method was used to correct data instead of removing

he bad artifacts of data, with the maximum acceptable 0.5 s windows

et to 10 standard deviations. Independent component analysis (ICA)

as implemented by using the runica function in EEGLAB to remove

he artifact caused by ocular movement, cardio activity, and muscle

ovement. After running the ICA, we used a semiautomatic method

o remove the artifact component. In detail, we mainly used the ICAla-

el plug-in ( https://labeling.ucsd.edu/tutorial/overview ) to remove the

rtifacts based on a threshold for rejecting the component, which is

bove 0.7 for both the muscle and ocular artifacts ( Pion-Tonachini et al.,

019 ). 

.9. Intersubject correlation 

To reveal the shared neurophysiological response pattern across par-

icipants and examine the reliability of the complex naturalistic stimuli,

e first conducted ISC analysis. It is noteworthy that for each video clip,

https://github.com/andlab-um/Emotion_EEG
https://labeling.ucsd.edu/tutorial/overview
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nly the 20 s that elicited the most intense emotional experiences were

xtracted from the original data. These time course data of 20 s were av-

raged within each emotion condition to obtain mean time-course data.

his procedure was conducted for all emotion conditions and both EEG

nd ECG data ( Fig. 2 ). 

First, to calculate the behavioral similarity and capture the sim-

larity in both high and low scores, we adopted the Anna Karenina

AnnK) method ( Finn et al., 2020 ). The “Anna Karenina method ” is a

ethod that calculates the behavioral similarity. Particularly for behav-

oral measures, data are often one-dimensional, and the AnnK method

omputes the distance between two scores. In detail, the Annk method

rst transfers the original scores into ranks, then, for each pair of the

cores, the distance is calculated as the mean of the sum of the absolute

ositions of the ranks. For example, if we have n subjects in total, for

ubject i and subject j , the distance is calculated as demonstrated in the

ollowing equation: 

𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑒𝑎𝑛 

( 

𝑟𝑎𝑛𝑘 ( 𝑖 ) + 𝑟𝑎𝑛𝑘 ( 𝑗 ) 
𝑛 𝑠𝑢𝑏𝑠 

) 

After obtaining the distance between each pair of subjects, a pair-

ise subject-by-subject intersubject behavioral similarity matrix was ob-

ained. 

Second, for the EEG signal feature extraction and ISC analy-

is, we mainly examined the PSD features of the five frequency

ands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–

0 Hz), and gamma (30–45 Hz). In affective research, PSD is a

ommonly used feature to probe the neural correlate of emotion

 Hu et al., 2017 ; Dmochowski et al., 2012 ) and affective computing

 Zheng et al., 2014 ; Kroup et al., 2011 ). In the current study, the function

ne.time_frequency.psd_multitapper of MNE ( Gramfort et al., 2014 ) was

everaged to compute the PSD value by using the multitaper method.

fter obtaining the PSD values, the PSD values within each respective

requency band were averaged. Therefore, for each participant, the data

tructure would be 64 ∗ 5 ∗ 20 (channels ∗ frequency bands ∗ time points) for

ach emotion condition. Furthermore, the similarity of the PSD values

as computed using Pearson’s correlation between each pair of sub-

ects and bootstrapping, following the common practice of ISC analysis

 Hasson et al., 2004 ). This practice was looped through all EEG chan-

els and frequency bands, which yielded 320 (64 channels ∗ 5 frequency

ands) subject-by-subject similarity matrices for each emotion condi-

ion. 

Lastly, the ECG ISC analysis was conducted based on the HR and HRV

xtracted from the original ECG data. As for HR ISC analysis, which was

imilar to the ISC analysis for the PSD values. Specifically, Pearson’s cor-

elation was used to calculate the similarity of HR values between each

air of subjects within each emotion condition and obtain the pairwise

ubject-by-subject similarity matrix. For the HRV ISC analysis, since the

ata are one-dimensional scalars, the AnnK method was used to calcu-

ate the pairwise similarity matrix for each emotion condition. 

.10. Intersubject representational similarity analysis 

IS-RSA was further implemented to identify both the neural activity

nd physiological arousal that were significantly related to distinct as-

ects of sociability. The IS-RSA makes a further step based on the ISC,

hich aims to explore the interrelation between the similarity of neu-

ophysiological responses and the behavioral profile or psychometric

core. The theoretical consideration is aligned with the current hypoth-

sis, that participants with similar regard to the mentalizing ability and

mpathy trait would manifest similar neurophysiological responses to-

ards negative emotional experiences. 

After the ISC analysis, we obtained the intersubject similarity ma-

rices (ISM) for all of the features, including PSD values, ECG features,

nd psychometric summary score (left side of Fig. 3 ). ISM is an essential

omponent in IS-RSA, the shape of which is n(subs) × n(subs), and each

ell in ISM represents the similarity between two subjects. Therefore,
5 
or both neurophysiological response and sociability, ISM reflects the

verall similarity between any two of the subjects, and further analysis

ill link these ISM together to probe the individual variation. 

In detail, we used the non-parametric Mantel permutation test

 Mantel, 1967 ) to compute the similarity between the lower triangu-

ar matrix of the neurophysiological ISM and behavioral ISM. Specifi-

ally, both the rows and columns of the ISM were randomly shuffled

nd permuted, and Spearman rank correlation was used to compute the

orrelation between the two matrices. We permuted 10,000 times and

btained the null distribution of the ranked correlation, after which the

bserved correlation parameters were compared with this null distribu-

ion to obtain the p -value. 

The above-mentioned operation was looped separately for both

EG-behavior and ECG-behavior analysis as shown in Fig. 3 . As for

EG-behavior analysis, the Mantel test was looped across all channels

nd frequency bands on the lower triangle of behavioral ISM and up-

er triangle of PSD values ISM. This procedure yielded 320 similar-

ty values (64 channels × 5 frequency bands) for each emotion con-

ition. Furthermore, this would produce five sets of similarity topoplots

64 channels) that demonstrate the spatial distribution of representa-

ional similarity within each emotion condition (upper part of Fig. 3 ).

inally, the permutated p -values were thresholded using the false-

iscovery rate (FDR) (Benjamini-Hochberg procedure ( Benjamini and

ochberg, 1995 )) across all channels against multiple comparison. For

CG-behavior analysis, we also used the Mantel test to generate the cor-

elation between the lower triangle of behavioral ISM and the upper

riangle of the ECG features ISM (lower part of Fig. 3 ). 

. Results 

.1. Emotion rating 

Generally, as expected, these emotional film clips in VR that aimed

o elicit one certain emotion indeed showed the highest ratings in the

arget emotion category (Figure 0.4). There was a statistically signifi-

ant emotion intensity rating score in all emotion condition: (1) Angry

ondition ( F = 28.37, p < 0.000), (2) Anxious condition ( F = 20.73,

 < 0.000), (3) Fearful condition ( F = 98.48, p < 0.000), (4) Helpless con-

ition ( F = 56.77, p < 0.000). The Fig. 4 visualize the post-hoc paired t -

est results. These preliminary emotion rating score results demonstrate

hat the elicitation of negative emotion in VR was successful, suggesting

 distinction across these negative emotions. 

.2. Intersubject correlation analysis 

.2.1. Neural representation similarity of emotional experiences 

After calculating the intersubject similarity of the neural representa-

ion within different frequency bands of the five discrete emotions, we

ere able to examine the overall similarity or correlation. The results

evealed that the frequency band produced higher intersubject similar-

ty and delineated the common spatial neural response pattern using

opography. 

First, we calculated the overall similarity value that averaged across

ll channels within each frequency band. When participants watched the

ngry videos, the highest mean ISC was produced within the theta and

lpha band (0.0736 and 0.0742, respectively). As for the anxious condi-

ion, the theta (mean ISC = 0.0814) and beta (mean ISC = 0.0722) bands

roduced higher overall ISC than the other bands. Interestingly, in terms

f the fearful condition, we observed a strikingly prominent ISC within

he gamma band (mean ISC = 0.1335). For helpless emotional experi-

nces, the beta band gave rise to the highest ISC (mean ISC = 0.0651).

inally, for the happy condition, the highest ISC values were observed

t the theta (mean ISC = 0.0738) and gamma (mean ISC = 0.0790)

ands. 

Second, after obtaining the intersubject similarity matrices for each

lectrode, we calculated the mean similarity value by averaging the up-
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Fig. 3. Flowchart of the intersubject representational similarity analysis (IS-RSA). We had intersubject similarity matrices (ISM) for three modalities of data: 

(1) behavioral measures; (2) physiological data (ECG); and (3) EEG data. The upper part demonstrates the EEG-behavior IS-RSA: Spearman’s rank correlation was 

employed to compute the similarity between the lower triangle of behavior ISM and the upper triangle of EEG ISM, and this practice was looped for all electrodes to 

generate the topoplots. While the lower part describes the ECG-behavior IS-RSA: the similarity between the lower triangle of behavior ISM and the upper triangle of 

ECG ISM was computed by Spearman’s rank correlation. 
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er triangle matrix, and the mean similarity value was used to plot the

imilarity topography. Interestingly, after delineating the whole sets of

ntersubject similarity topographies, we were able to reveal the neural

epresentation pattern of these discrete negative emotions as shown in

ig. 5 . We found that for angry condition, the highest ISC value was

bserved at the occipital and posterior parietal regions within the rela-

ively lower frequency band of theta and alpha. Anxious experiences are

inked to a more pronounced ISC over the frontal and occipital region

ithin the theta band, and a higher ISC at the central-parietal region

ithin the beta band. As for the fearful condition, we observed an inter-

sting dominant highest ISC value located at the frontal, right temporal-

arietal, and occipital region within the gamma band. The highest ISC

alue for helplessness was mainly found at the occipital and central-

arietal region; happy experiences showed a higher ISC at both the pos-

erior and frontal regions. 
I  

6 
These topographies suggested the reliability of these emotional expe-

iences, and indicated that different cognitive processes were involved

n producing and representing various negative emotional experiences.

n addition, the ISC results demonstrated a common neural response

cross distinct negative affective experiences. Consistent with our first

ypothesis, both emotion rating scores and ISC results suggested that

oth the specificity and the sharing of emotional responses. 

.2.2. Physiological representation similarity of emotional experiences 

Meanwhile, shared responses across participants were also found

n the psychophysiological responses, where we mainly focused on the

CG-related features of HR and HRV. First, regarding the mean ISC of

R, angry (mean ISC = 0.0222), anxiety (mean ISC = 0.0154), fear

mean ISC = 0.0462), helpless (mean ISC = 0.0496), happy (mean

SC = 0.3669). Second, in terms of HRV, the mean ISC was calculated
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Fig. 4. Results of the emotion intensity rating score . For each type of nega- 

tive emotion, all participants were required to evaluate the emotional intensity 

in all categories. This barplot suggests that the rating scores were highest regard- 

ing the displayed emotion in each negative emotion condition. Asterisk indicates 

statistical significance for post-hoc paired t -test, with ∗ ∗ ∗ indicates p < 0.001, ∗ ∗ 

indicates p < 0.01. 
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Fig. 5. Intersubject correlation of neural representation. Topographies of the intersu

shown. The spatial distribution of these topographies was quite similar across emotio

7 
s following, angry (mean ISC = 0.5138), anxiety (mean ISC = 0.5131),

ear (mean ISC = 0.5135), helpless (mean ISC = 0.5128), and happy

mean ISC = 0.5121). All similarity matrices of the ECG features are

resented in the supplementary information (Fig. S1). 

.3. Intersubject representational similarity analysis 

.3.1. Different mentalizing abilities were associated with distinct 

europhysiological patterns 

Overall, the similar ability of self-other mentalizing was found to be

ssociated with similar and distinct neural responses for different neg-

tive emotional experiences, the topography plots are shown in Fig. 6 .

t is also noteworthy that the statistics were reported in the main text

nly for the representative electrodes within the significant clusters, the

etailed statistics are provided in the supplementary materials (see sup-

lementary information Tables S1–S4) Fig. 7 . 

For angry emotional experiences, in the theta band, the correlation

as prominent at the electrodes TP8, and TP10 ( r = 0.13, p = 0.01;

 = 0.11, p = 0.02, respectively) at right temporal- parietal junction. As

or the beta band, the effect was pronounced at the electrodes located

t the left prefrontal region, which included F7, AF7, and FT7 ( r = 0.17,

 < 0.01; r = 0.12, p = 0.016; r = 0.14, p < 0.01, respectively). For the
bject similarity of neural representation within different frequency bands was 

ns. 
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Fig. 6. IS-RSA results regard mentalizing ability . Topographies of the IS-RSA between neural similarity and mentalizing similarity within different frequency 

bands. Black dots in the topographies indicate the significant electrodes that survive the FDR correction in the permutation test. IMQ-SO = self-other mentalizing in 

the interactive mentalizing questionnaire. 
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amma band, the correlation was prominent at central-parietal and left

emporal-parietal region. The central-parietal cluster mainly consisted

f electrodes Cz, CPz, Pz ( r = 0.14, p < 0.01; r = 0.14, p < 0.01; r = 0.15,

 < 0.01, respectively). While the left temporal-parietal regions include

P7 and TP9 ( r = 0.21, p < 0.01; r = 0.13, p < 0.01, respectively). As for

nxious emotion, in the alpha band, the correlation was prominent at the

7, FT9 ( r = 0.12, p = 0.018; r = 0.16, p = 0.012, respectively) within the

eft frontal region, and the P7 ( r = 0.12, p = 0.018) at the left temporal-

arietal region. With respect to beta band, the result showed that the

orrelation was also prominent at the left frontal-central region, includ-

ng Fp1, FC3 ( r = 0.12, p = 0.025; r = 0.11, p = 0.037, respectively);

nd F4 ( r = 0.1, p = 0.040) at the right frontal-central region. 
8 
Regarding fearful experiences, we found a pronounced correlation at

he right parietal-occipital region, particularly at P8 and PO8 ( r = 0.13,

 = 0.015; r = 0.14, p < 0.01, respectively) within the alpha band. In-

erestingly, in gamma band, a strikingly pronounced association was

ound at the whole frontal region, such as at AF3 ( r = 0.25, p < 0.01),

F4 ( r = 0.18, p < 0.01), AF7 ( r = 0.21, p < 0.01), and AF8 ( r = 0.19,

 < 0.01). 

With regards the helpless experiences, the self-other mentalizing

bility variation was distinctly mapped to neural representation at the

arietal-occipital region within the beta band, which was re- markable

t POz, PO3, and PO4 ( r = 0.14, p < 0.01; r = 0.15, p < 0.01; and r = 0.11,

 = 0.017, respectively). 
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Fig. 7. IS-RSA results regarding empathic concern. Topographies of the IS-RSA between neural similarity and IRI-EC similarity within different frequency bands. 

Black dots in the topographies indicate the significant electrodes that survive the FDR correction in the permutation test. IRI-EC = Interpersonal Reactivity Index’s 

Empathic Concern. 
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Interestingly, after performing the matrix permutation between the

hysiological similarity matrices and the self-other mentalizing score

imilarity matrices, it is revealed that the individual difference in HRV

as closely associated with the mentalizing ability for self-other infer-

nce(Specifically, the result showed that under angry emotion ( r = 0.34,

 < 0.001); under anxiety ( r = 0.26, p < 0.001); under fear condition

 r = 0.36, p < 0.001); under helpless condition ( r = 0.29, p < 0.001);

nd under happy condition ( r = 0.34, p < 0.001)). 

Additionally, the detailed statistical results of the IS-RSA between

europhysiological responses and perspective taking (Tables S8–S10),

nd the corresponding topoplots (Fig. S3) are included in the supple-

entary information. 

In summary, this series of results indicated how interpersonal varia-

ions in mentalizing ability were captured by the responses to negative

ffective experiences from both the CNS and ANS. 

.3.2. Different trait of empathy is associated with distinct 

europhysiological patterns 

As for the association between the individual difference of trait em-

athy and neurophysiological representation, the results also demon-

trated recognizable mapping between these similarity matrices. Con-

erning the variation of EC that aims to inspect the ability of sympa-

hy and concern for the suffering of others, different variation patterns
9 
ere revealed regarding the diverse negative emotional experiences in

he current study. The detailed statistics regarding the significant elec-

rodes can be found in the supplementary materials (see supplementary

nformation Tables S5–S7). 

Specifically, as for angry emotion, we found a significant similarity at

he occipital region within delta band, Oz and O2 ( r = 0.13, p = 0.015;

 = 0.14, p = 0.012, respectively). While within the theta band, the

ariation was also reflected at the left central region and parietal region,

ith highest similarity found at Pz, P1, P2 ( r = 0.19, p < 0.01; r = 0.15,

 < 0.01; r = 0.18, p < 0.01, respectively), and FC3, C3( r = 0.13, p < 0.01;

 = 0.15, p < 0.01, respectively). Furthermore, for the gamma band,

he similarity was centered at the left temporal-parietal region, which

nclude CP5, TP7, and TP9 ( r = 0.15, p = 0.01; r = 0.12, p = 0.028;

 = 0.14, p = 0.01, respectively). 

Regards the fearful condition, the correlation was pronounced at

he left prefrontal region, and the right central-parietal region within

he beta band. In detail, the similarity was found at Fp1, AF7, and F7

 r = 0.11, p = 0.026; r = 0.10, p = 0.036; and r = 0.10, p = 0.041,

espectively), and CP6, TP8, and TP10( r = 0.11, p = 0.026; r = 0.11,

 = 0.026; and r = 0.11, p = 0.026, respectively). Interestingly, we also

ound a prominent similarity at the occipital region within the gamma

and, which was remarkable at Oz, O1, and O2 ( r = 0.16, p < 0.01;

 = 0.12, p = 0.01; and r = 0.14, p < 0.01, respectively). 
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While against the helpless condition, it was shown that the neural

ynamics at the left parietal region and central frontal region were cap-

ured by the variation in the EC score. In detail, within the delta band,

he highest similarity was found at P4 and P6 ( r = 0.16, p < 0.01;

 = 0.14, p < 0.01, respectively). For the theta band, the electrodes

hat produced prominent correlation were P6, P8, and PO8 ( r = 0.17,

 < 0.01; r = 0.17, p < 0.01; r = 0.18, p < 0.01, respectively); while

or the alpha band, we found similarity at the P4 and PO4 ( r = 0.13,

 = 0.012; r = 0.13, p = 0.012, respectively). 

However, the results did not show a significant association between

he physiological similarity matrices and the EC similarity matrix. In

ummary, this part of the findings further elaborates our hypothesis,

hat individual differences in EC are also reflected in neural responses. 

In addition, the intersubject representational similarity effects were

lso compared between gender groups, the topoplots of the exploratory

esults were included in the supplementary information (Figs. S4 and

5). However, the biased sex ratio in the current study may hinder such

ender difference effects, which will be addressed in the limitation sec-

ion. 

. Discussion 

Considering the complex nature of emotional experiences and socia-

ility, the present study aimed to characterize the common and distinct

europhysiological representation of negative emotional experiences.

o test our hypotheses, we mainly examined: (1) the intersubject simi-

arity of neurophysiological responses, and (2) and whether the individ-

al differences in sociability could be reflected in neurophysiological

esponses. Our findings demonstrated that the negative emotional ex-

eriences exhibit shared neural and physiological responses across sub-

ects. Furthermore, rather than common responses, the neural responses

ould capture the interpersonal variations in sociability. These behav-

oral variations also significantly influence the psychophysiological re-

ponses to negative emotional experiences. Overall, the observed indi-

idual differences in sociability and neurophysiological representation

upport the involvement of social cognition in individualized emotional

rocessing. These findings can advance our understanding regarding the

rediction of individual differences in human emotional experiences. 

.1. Shared neurophysiological representation in negative emotional 

xperiences 

Indeed, negative emotions are essential for survival ( Buss, 1995 ),

nd guide selective attention, memory, and adaptive decision-making.

iven the cultural variations of negative emotion in previous studies

 Matsumoto, 1989 ), it is also noteworthy that the results could be at-

ributed to the limitation of emotional stimuli or elicitation methods.

herefore, we used VR to elicit more realistic emotional experiences

nd simultaneously record signals from both the CNS and ANS while

atching emotional videos. In addition to providing broad evidence of

he distinctions of different emotions, but we also focused on individ-

al variability. We separate the behavioral measures (ratings of per-

eived emotion intensity, and sociability scales) and neurophysiological

esponse, with the hypothesis that each individual’s model of perceived

motion similarity would predict their similarity in neurophysiological

esponses, which may be subject to one’s sociability. 

In detail, at the behavioral level, it is observed that most videos

voked higher arousal regards the displayed emotion category. The rat-

ng results indicate clear distinctions across these negative emotions. For

he neurophysiological responses, we have found consistent prominent

ntersubject similarity across different negative emotions in the parieto-

ccipital regions and frontal regions. In a word, the neural results

emonstrate a relatively general intersubject synchronization pattern

ather than distinction. More specifically, previous studies indicated that

ntersubject neural synchronization serves as an elementary predictive
10 
oding, learning, and conscious processing of stimuli in the social con-

ext ( Nummenmaa et al., 2018 ). Although we did not track back the EEG

o the source brain region, the gradient of parieto-occipital region has

een shown topologically mapped to emotion encoding ( Lettieri et al.,

019 ). Therefore, the current results provide evidence for a common

eural pattern that supports various negative emotional experiences. 

.2. Distinctive pattern of fear 

Interestingly, especially for the fearful emotional experiences, we re-

ealed a distinct interpersonal similarity within the gamma band in the

rontal and occipital regions. Threat or dangerous stimuli are the most

alient cue to our survival, which would induce a series of physiological

esponses and neural computation ( Levy and Schiller, 2021 ). Previous

EG studies on fear have demonstrated the role of the gamma activity

ver the prefrontal regions in fear emotion encoding, expression, and

ecall ( Mueller et al., 2014 ; Maffei et al., 2020 ). Meanwhile, in addi-

ion to the frontal region, another EEG study has shown an increase

f gamma activity over the visual cortex during fear learning ( Santos-

ayo et al., 2022 ). In the current study, the stimulus was immersive

motional videos that were identical to all subjects, and the subjects

ould encode different emotional and contextual cues, and a series of

erceptual and cognitive processes would involve. Therefore, the cur-

ent result extended the previous finding and advances our understand-

ng of the common fear responses shared across individuals. Further-

ore, we also found a co-occurrence of higher gamma-band intersubject

imilarity over the frontal and occipital electrodes. It is reasonable to

peculate that the visual system and high-order cognitive system would

nteract frequently during the fear experiences. Specific to physiological

nterpersonal similarity, a recent interesting study ( P´erez et al., 2021 )

evealed that narrative stimuli synchronize the HR across subjects, and

his synchronization was modulated by the attention process. Thus, it is

easonable to infer that humans may give rise to similar conscious pro-

essing of the complex social and affective stimuli, which would mod-

late the physiological arousal and fluctuations and produce interper-

onal similarity. Moreover, this physiological similarity was consistent

ith the neural similarity, that both modalities index the reactive per-

eptual and cognitive processes of the negative emotional stimuli. These

hared responses further our understanding of how the CNS and ANS co-

rdinated during negative emotional experiences and future studies can

nvestigate whether there were fewer variations in fearful experiences

cross individuals. 

.3. Self-other mentalizing ability and emotional neurophysiological 

esponse 

The mentalizing ability is an essential ability that enables us to read

he mind of others, infer their mental states, and further share the emo-

ions of others ( Wu et al., 2022 , 2020 ). In particular, the self-other men-

alizing ability that we addressed in the current study plays a key role in

he mind-inference process. Consistent with our hypothesis, the results

ndeed demonstrate that the individual variation in self-other mental-

zing ability score modulates the EEG activities of several key regions

ithin the ‘social brain’ ( Adolphs, 2009 ), which further supports the

iew that emotional information processing is modulated by complex

ocial cognition. Generally, when summarizing the result together, it is

evealed that the regions that could reflect the behavioral variation in-

lude the prefrontal cortex (PFC), temporal-parietal junction (TPJ), pos-

erior superior temporal sulcus (pSTS), and the posterior central region

here the precuneus and posterior cingulate cortex (PCC) are located.

hese brain regions have been recognized as the key nodes within the

eural network for interactive mentalizing, especially related to the self-

ther first-order mentalizing process ( Wu et al., 2020 ). 

A recent interesting EEG study has proposed an “emotion profile ”

iew to probing the individual difference in emotion conceptualization
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s  

i  
nd neural representation ( Hu et al., 2021 ). They found that the vari-

tion of the negative emotion profile was associated with neural ac-

ivity within the delta and theta band, which is consistent with the

urrent results. Thus, it is possible that the revealed neural variation

n delta and theta band could be due to the involvement of people’s

ifferent conceptualizations of the emotional scenario. Emotional con-

eptualization has been recognized as an important component of the

entalizing framework ( Wu et al., 2020 ; Kliemann and Adolphs, 2018 ;

rith and Frith, 2006 ). Therefore, individual variationw in mentaliz-

ng ability would be closely associated with differences in emotional

onceptualization and lead to the variance of neural response. Further-

ore, with regards to social cognition, there is a growing body of evi-

ence linking EEG frequency-domain features to sociability and related

ysfunction. In detail, the EEG activity in the alpha and beta band has

ong been recognized to reflect the response of the mirror neuron sys-

em (MNS) and involve in sophisticated social perception and mental-

zation ( Perry et al., 2010 ; Pineda and Hecht, 2009 ; Ménoret et al.,

014 ). Dysfunction of the MNS is indicated by abnormal EEG activ-

ty within the alpha band in the autism group ( Oberman et al., 2005 ).

herefore, the alpha and beta variation found in the current study would

int at individual differences in terms of social information processing

 Prineda and Hecht, 2009 ; Ménoret et al., 2014 ) and lead to different

ind inference and emotional responses. As for the socio-affective pro-

ess, another EEG study documented that the beta coherence between

rontal and posterior regions was linked to social-emotional coordina-

ion ( Reiser et al., 2012 ). This finding may further demonstrate the role

f beta-band activity in emotional information processing in social sce-

arios. In summary, the neural activity of the alpha and beta bands may

e a promising neural signature of social functioning ( Tognoli et al.,

007 ). 

Surprisingly, we found that posterior central region EEG activ-

ty within several frequency bands was associated with mentalizing

bility across negative emotions. Given the functional role of pre-

uneus/PCC self-referential and self-attribution process in social cogni-

ion ( Petrini et al., 2014 ), a possible interpretation is the different levels

f involvement in the social scenarios. Specifically, individuals with dif-

erent mentalizing abilities would attend to or involve the third-person

erspective differentially, which would induce interpersonal variation

egarding EEG activities. Furthermore, it was revealed that the effect

etween EEG and PT is also prominent at the central region. And previ-

us literature has documented that the neural activity at central-parietal

egions is closely related to perspective taking in a pain judgments task

 Li and Han, 2010 ). Another insightful EEG study that examines the

eural mechanism of self-disclosure process have also found that cen-

ral region actively involved in self-relevance, perspective talking pro-

ess, and also the processing of emotional words ( Fields and Kuperberg,

012 ). 

Regarding the relationship between psychophysiological signals and

ehavior, we found a prominent association between HRV and men-

alizing ability. In terms of social cognition and functioning, HRV has

een found to be influenced by the types of social interaction and socio-

ffective information ( Shahrestani et al., 2015 ). Furthermore, studies on

ocial dysfunction found that HRV features decreased in the social anx-

ety group ( Gaebler et al., 2013 ) and the autism group ( Dijkhuis et al.,

019 ) in social tasks. While for emotion processing, it has been shown

hat HRV features were positively correlated with emotion recogni-

ion performance ( Quintana et al., 2012 ). HRV has also been recog-

ized as related to emotional regulation ( Appelhans and Luecken, 2006 ;

iu et al., 2016 . Therefore, the current finding of an HRV-mentalizing

ssociation may indicate that similar cardiac activities reflected simi-

ar socio-affective processing and regulation. This is consistent with our

ssumption that different mentalizing abilities relate to different physio-

ogical responses. In a word, as suggested by Petrocchi and Cheli (2019) ,

RV is closely associated with the social brain, which is also a promis-

ng measure that reflects the individual difference in the socio-affective

rocess. 
11 
.4. Empathic concern and emotional neurophysiological response 

Except for mentalizing, another essential sociability that empathized

n the current study is empathy, which was measured by the dimension

f EC in the IRI. Unlike the first-order self-other mentalizing ability that

e discussed above, the EC is more focused on the prosocial concern

r the motivation to share and improve the experiences of the social

gents ( Zaki and Ochsner, 2012 ). Specifically, in our results, the varia-

ion regards EC correlated with the neural response variation over the

arieto-occipital region, temporal-parietal region, and frontal regions.

n detail, it is shown that the association between EC variation on neural

esponse is the most prominent over parieto-occipital region. A recent

tudy found that individuals with high empathy showed stronger acti-

ation over parieto-occipital region while watching social interactions

 Hamada et al., 2022 ). Our results extended this finding that the parieto-

ccipital region may be associated with the manifestation of negative

ffective experience. Furthermore, the result implied that individuals

ith higher EC scores would pay more attention to the dynamic social

timuli and mind inference. Another study indicated that the temporal-

arietal region is associated with emotion encoding ( Hu et al., 2021 ;

ettieri et al., 2019 ) and empathy ( Zaki and Ochsner, 2012 ). Meanwhile,

t has been mentioned that the effect over parieto-occipital would reflect

he differential attention process. Therefore, we can speculate that indi-

iduals who differ in EC may also differentially encode the valence and

rousal of affective experience differentially. Meanwhile, the frontal-

egion is also a key node in the empathy network, especially in the

entromedial prefrontal region ( Shamay-Tsoory et al., 2009 ; Singer and

limecki, 2014 ). Especially in the helpless condition, we found similar

heta band neural activity over medial frontal region associated with

imilar empathic concern. Helplessness has been proven to induce em-

athy and promote altruistic behaviors ( Klimecki et al., 2016 ). It is ap-

ropriate to infer that the high-order social cognitive understanding im-

lemented within the frontal region is involved in producing negative

ffective experiences. Such individual differences in this process could

e explained by the different levels of empathic concern. 

.5. Strengths and limitations 

The strengths of the present study include the following: (1) using

he natural stimuli for emotion elicitation; (2) immersive elicitation in

R; and (3) capturing the individual differences using IS-RSA. Probing

he ‘social brain’ in real-world is one of the major aims of social neuro-

cience. It is undeniable that the emotional experience in real-life set-

ings is multisensory, perceptually complicated, continuously changing,

nd intertwined with a series of social cognition processes. Fortunately,

ith the rapid development of VR and naturalistic neuroimaging, social

euroscientists can provide participants with dynamic and interactive

ocial and affective scenarios to probe the corresponding neurocognitive

echanism in a more ‘realistic’ manner. Echo with the complex percep-

ual and cognitive nature of real-world affective experience, our results

f both ISC and IS-RSA provided evidence correspondingly. Specifically,

he shared EEG response over the parieto-occipital and frontal region re-

ealed the involvement of stimuli evoked activity, self-related emotional

rocessing, and reasoning. And previous studies have shown the role of

arietal region in emotional experience ( Lettieri et al., 2019 ). Moreover,

he modulation of behavioral variation on EEG response further demon-

trates that several key nodes in the ‘social brain’ network were acti-

ated in these immersive emotional experiences. This evidence suggests

hat the findings based on static and controlled experiments could be

eneralized and extended to more dynamic and realistic experimental

ettings. Therefore, utilizing VR in neuroscience research would allow

esearchers to reliably capture the distinct neural mechanism in realistic

ettings. 

Several limitations should be addressed. First, the moderate sample

ize of 42 subjects and the relatively biased sex ratio and age range

n this within-subjects manipulation study may limit the generation of
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omprehensive negative emotions profiles. Future studies should em-

loy a larger sample size and comparable sex ratios to examine the reli-

bility of the effect. Interestingly, regarding aging and social cognition,

revious researchers have found that aging is related to mentalizing per-

ormance, prosocial behaviors, and empathy ( Reiter et al., 2017 ). At the

ehavioral level, the socio-cognitive abilities were relatively impaired

n the old age group ( Henry et al., 2013 ), while the socio-affective abil-

ties were still intact ( Richter and Kunzmann, 2011 ) and emotional em-

athy was even greater in the old age group ( Sze et al., 2012 ). At the

eural level, it has also been documented that the neural circuit of em-

athy would change along with the aging process ( Chen et al., 2014 ).

herefore, it would be interesting to examine how aging-related changes

n sociability associated neurophysiological representation of negative

motions in a social context. 

The second limitation relates to the results that although we found

 prominent correlation between the similarity matrices of different

odalities, the temporal information was overlooked. Specifically, it

emains unclear whether the similarity changes through IS-RSA. Future

tudies could propose a larger sample size and a new analysis method

hat can discover the dynamic similarities based on multi-modality data.

lthough we did not have a specific hypothesis concerning the contri-

ution of each frequency band to the individual variation of emotion

epresentation, the current study has indicated the strong potential of

ecomposing neural time series into different frequency bands for prob-

ng the social brain. 

Finally, the current passive viewing paradigm does not allow par-

icipants to implement real prosocial behaviors to release the negative

tates of other social agents, and there was no neutral condition or data

cquired from a non-VR environment for comparison. Future studies

ould address these comparisons and further examine the utility of VR

n socio-affective research. Meanwhile, it is promising and reasonable

o construct ‘realistic’ negative social scenarios and examine empathy

ehaviors and decision-making in future work. Developing in this topic

romises to benefit multiple fields, while more specific natural studies

easuring emotion experience variations and its linking with individual

ifferences are needed. 

. Conclusion 

In summary, the current study first demonstrated how negative

motional experiences synchronize with neurophysiological responses.

ased on this interpersonal similarity, we further examined how men-

alizing ability and trait empathy modulate the representations of nega-

ive emotional experiences systematically and manifest individual vari-

tions. Meanwhile, we demonstrated the utility and reliability of VR in

ocial affective neuroscience research, which deserves more attention

n future studies. This work helps to disentangle long-history questions

egarding the category and relevance of different negative emotions and

heir link with neurophysiological responses and one’s sociability. 
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