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A B S T R A C T

Individuals’ affective experience can be intricate, influenced by various factors including monetary rewards and 
social factors during social interaction. However, within this array of factors, divergent evidence has been 
considered as potential contributors to social anxiety. To gain a better understanding of the specific factors 
associated with anxiety during social interaction, we combined a social interaction task with neurophysiological 
recordings obtained through an anxiety-elicitation task conducted in a Virtual Reality (VR) environment. 
Employing inter-subject representational similarity analysis (ISRSA), we explored the potential linkage between 
individuals’ anxiety neural patterns and their affective experiences during social interaction. Our findings sug
gest that, after controlling for other factors, the influence of the partner’s emotional cues on individuals’ affective 
experiences is specifically linked to their neural pattern of anxiety. This indicates that the emergence of anxiety 
during social interaction may be particularly associated with the emotional cues provided by the social partner, 
rather than individuals’ own reward or prediction errors during social interaction. These results provide further 
support for the cognitive theory of social anxiety and extend the application of VR in future cognitive and af
fective studies.

1. Introduction

Each individual has a unique way of experiencing and expressing 
mood states, which can have a wide range of effects on social behavior. 
Affective states and sociability shape our perceptions of the social world 
and how we infer social cues from others, especially during interactions. 
It emphasizes the benefits of positive emotions and explores how 
negative emotions can hinder social interactions and prosocial behavior 
(Dunn and Schweitzer, 2005; Stellar et al., 2015). However, affective 
experiences during social interaction are complex and influenced by 
various factors. Previous studies have identified that learning history, 
monetary reward, and social stimuli can all influence an individual’s 
subjective feelings during interactions (Kao et al., 2023; Rutledge et al., 
2014). Meanwhile, the emotions as social information (EASI) model 
suggests that individuals use others’ expressed emotions to infer in
tentions, motivations, and relational dynamics, thereby influencing so
cial judgments, decision-making, and behaviors (Kleef, 2009).

Anxiety plays a significant role in social contexts and adaptive 

responses, guiding individuals to conform to social norms, thereby 
influencing social interactions and emotional experiences (Gilbert, 
2001). Evidence from both animals and humans consistently supports 
the association between anxiety and decision-making in aversive situa
tions (Browning et al., 2015; Hein et al., 2021). Anxious individuals are 
characterized by overestimating the likelihood of aversive results or 
worrying about negative outcomes and difficulty learning the 
action-outcome association (see a review (Grupe and Nitschke, 2013)). 
Existing findings imply that clinical and subclinical (trait) anxiety can 
lead to higher intolerance of uncertainty and different learning rates 
between the volatile and stable contexts, which can impair 
decision-making and interferes with learning (Hein et al., 2021). Prior 
event related potential (ERP) study shows that socially anxious in
dividuals often exhibit a negative-expectancy bias on social cues (Cao 
et al., 2015). Meanwhile, adaptation to context volatility requires the 
detection of change in action-outcome contingencies and the processing 
of surprise signals (Gagne et al., 2020). Although previous studies have 
investigated learning and behavioral patterns in anxious individuals, the 
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association between individuals’ idiosyncratic anxious neural activity 
patterns and their affective experience during real social interaction 
remains largely unknown.

Affective experiences during social interaction can be described 
using two dimensions: valence and arousal, which captured distinct but 
related aspects of human affect (Russell, 1980). While valence reflects 
the positivity or negativity of an emotional state, arousal reflects the 
level of activation or intensity associated with it (Feldman Barrett and 
Russell, 1998). Affective states can fluctuate with decisions or social 
interactions. For example, in the social context, people’s valence and 
arousal could have an influence on their punitive and uncooperative 
choices in competitive interactions (Heffner and FeldmanHall, 2022). 
On the other hand, it has been demonstrated the long-lasting effect of 
emotions on cognition and behaviors, as well as consistent patterns of 
emotional expression across cultures and individuals (Ip et al., 2021; Hu 
et al., 2022). Having a more comprehensive understanding of the af
fections during social interactions requires us to know how these af
fective states are processed in the brain. To investigate the dynamic 
nature of these affective states and their underlying neural mechanisms, 
electroencephalography (EEG) has been emerged as a powerful tool in 
studying human affection. The comprehensive features of EEG, like 
power spectral bands, are valuable tools to study humans’ affect and 
emotion and their interaction with behavior (Suhaimi et al., 2020). For 
example, it is identified EEG alpha asymmetry as a potential bio-marker 
for anxiety and depression (Mathersul et al., 2008; Thibodeau et al., 
2006). Previous studies used resting-state EEG features as stable in
dicators of individuals’ cognitive deficiencies(J. Wang et al., 2013; 
Khanna et al., 2015). There is also a recent study that used inter-trial 
EEG variations to predict individual differences in social tasks (Zhang 
et al., 2021). The cumulative evidence strongly suggested that EEG can 
be considered as a effective bio-marker to represent individual’s affec
tive patterns during social interaction. In addition to EEG, electrocar
diogram (ECG) data also provides critical insights into the physiological 
underpinnings of emotional and affective experiences. ECG measures, 
such as heart rate variability (HRV), are closely linked to affect regu
lation and stress responses (Thayer and Koenig, 2019), especially some 
negative emotions like fear or anxiety (Garfinkel et al., 2014).

Unlike traditional methods, virtual reality (VR) techniques offers a 
dynamic and immersive environment that closely mirrors real-world 
situations, which can be considered as a more effective and ecological 
tool to study emotion (Faul et al., 2020; Baños et al., 2006; Riva et al., 
2007; Melo et al., 2022). However, the affective responses in such 
contexts are often nuanced and complex, making them difficult to cap
ture using traditional analysis methods that rely on comparisons across 
different conditions. To address this challenge, inter-subject represen
tational similarity analysis (ISRSA) has emerged as a powerful analytical 
tool in naturalistic settings (Chen et al., 2020; Finn et al., 2020; Camacho 
et al., 2024). This technique builds upon intersubject correlation anal
ysis (ISC), which assesses the consistency of participants’ temporal re
sponses to a dynamic stimulus (Cohen et al., 2017; Hasson et al., 2004; 
Nastase et al., 2019). Our previous work identified the idiosyncratic 
neurophysiological pattern across individuals under negative emotions 
and the relationships to their sociability through VR, which suggests that 
sociability plays a significant role in shaping how individuals process 
and respond to negative emotional stimuli in VR, highlighting the 
importance of considering individual differences in sociability when 
studying emotional responses (R. Wang et al., 2022). However, further 
evidence needs to be provided on how the emotional responses in VR 
can link to real social tasks.

Thus, the current work aims to use those neural patterns under VR- 
induced anxiety as an idiosyncratic marker to investigate individuals’ 
affective patterns during natural social interaction. To bridge in
dividuals’ idiosyncratic anxiety patterns and their affective patterns 
during social interaction, here, we employed a combination of EEG re
cordings and behavioral tasks to assess the impact of anxiety on social 
decision-making and emotional responses. Specifically, we aimed to 

answer the following questions. Q1: How does monetary reward and 
social reward affect social-interaction-based affective experiences? Q2: 
Which factors that affect individuals’ affective experience during social 
interaction can be specifically associated with the emergence of anxiety? 
To avoid explicitly introducing the concepts or feelings of anxiety to the 
participants during social interaction, we first used an independent 
emotion-elicitation task to record participants’ neural-physiological 
pattern of their intense anxiety under VR. Then, using the inter- 
subject representational similarity analysis (ISRSA), we aim to see if 
individuals’ anxiety neural patterns can be linked to individuals’ af
fective experience during social interaction. We hypothesize that in
dividuals’ variation in generating different affective experiences during 
social interaction can be linked to their idiosyncratic anxiety neural 
patterns.

2. Methods

2.1. Participants

A total of 42 right-handed individuals (31 females, age range: 19 - 24 
years old, mean age = 21.74 ± 2.19) were recruited from the University 
of Macau using an online advertisement. No participants reported a 
history of mental abnormalities or neurological disorders. Prior to the 
experiments, all participants provided informed consent. All partici
pants were scheduled to complete three sessions of the study: 1) Par
ticipants’ mentalizing and empathy abilities were measured using 
psychological scales before the experiment; 2) During the neurophysi
ological recording session, participants were required to watch the 
emotion-inducing video clips under VR with the EEG and electrocar
diograph (ECG) recording; 3) participants were required to complete a 
computer-based social interaction game later online. A total of 37 in
dividuals completed the task. 6 participants’ data were excluded due to 
contaminated signals during emotion elicitation. A total of 31 partici
pants were included in further analysis (21 females, mean age = 21.55 ±
2.08) All procedures reported above were approved by the local ethics 
committee of the University of Macau (BSERE21-APP006-ICI). The EEG 
and ECG data used in this study were previously reported in our earlier 
work, which addressed different research questions (R. Wang et al., 
2022). New analyses were performed in the current study to explore 
distinct research questions.

2.2. Experimental tasks

2.2.1. Social interaction game
The social interaction game (SIG) was used to investigate partici

pants’ emotional responses and inferences from social interaction 
(Fig. 1a) (Deng et al., 2021). On each trial, participants would interact 
with a partner who made a $10 offer or not with a different emotional 
cue (happy vs. sad). After the interaction, participants were asked to 
indicate their affective state, including valence and arousal. Then they 
were required to make a prediction on the possibility of getting the $10 
offer in the subsequent trial. In this study, each subject engaged in in
teractions with all three different partners (Partner 1, Partner 2, and 
Partner 3), representing different levels of emotional volatility (low, 
medium, and high). The different levels of volatility were manipulated 
by the partner’s frequency of switching the emotional cue, where the 
cues and rewards were pseudo-randomly assigned (Fig. 1b). All three 
partners had the same probability of offering the reward given a certain 
emotional cue (Fig. 1c). As a within-subject study, all participants would 
have to complete 30 trials of interaction with each partner, which means 
there were 90 trials in total.

2.2.2. Naturalistic viewing task under VR
During the emotional recording period, VR devices were used for the 

video presentation to elicit an immersive anxiety experience for each 
participant. More specifically, before the neurophysiological recording 
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session, experimenters would ensure the EEG cap and ECG electrodes 
were well placed and then asked the participants to wear the VR head- 
mounted display goggles (Vive Eye pro, HTC Corporation) with an 
adjusted focal length for each participant. To ensure the viewing envi
ronment would move along with the head for immersive, real-life ex
periences, we used infrared lights, accelerometry, and a gyroscope to 
track the head movement.

During the viewing session, three preliminary selected anxiety- 
inducing video clips were presented to the participants. All partici
pants were asked to use a 4-point scale to rate their emotional arousal 
after the viewing task, which was done to confirm the effectiveness of 
the manipulation in terms of reliability and validity of the stimulus as 
well as participant engagement during the task. The rating was the same 
as the 4-point Likert scale used in the selection period.

The current naturalistic viewing paradigm was programmed by the 
Unity platform and communicated with the goggles using Steam VR. 
Meanwhile, an embedded Python script (https://github.com/andlab-um 
/Emotion_EEG) was used in the Unity program for sending marks to EEG 
and ECG recording machines for synchronization.

2.3. Materials

2.3.1. Psychological scales
In this study, two psychological scales, the interactive mentalizing 

questionnaire (IMQ) (Wu et al., 2022) and the Interpersonal Reality 
Index (IRI) (Davis, 1983), were administered to participants for the aim 
of assessing participants’ mentalizing and empathy capacities. IMQ was 
generated based on the interactive theory of mentalizing, which consists 
of three subscales: inference of the mental state of others (SO: 
self-other), meta-cognition (SS: self-self), and meta-mentalization (OS: 
other-self). Meanwhile, the IRI is a widely used tool for measuring in
dividual differences in trait empathy which consists of four domains: 
perspective-taking (PT), fantasy (FS), empathic concern (EC), and per
sonal distress (PD). In this study, we specifically focused on the ”SO” 

subscale (Qin and Wu, 2024; Wu et al., 2020)within the IMQ and the EC 
and PD within the IRI to support our hypothesis. Participants were 
required to complete these scales before the experiments.

2.3.2. Emotional video materials
There were three steps for stimulus selection, we first constructed a 

movie dataset with the following three criteria: 1) the clip lasts for 
around three minutes; 2) the clarity of the video content; 3) there is only 
one type of emotional experience can be elicited by watching each clip, 
which is anxiety in this case. Then we recruited 40 other participants to 
rate the previously selected candidates on a 4-point Likert scale(0 = not 
strong at all, 3 = very strong). Based on the participants’ ratings, the 
three video clips with the highest scores were selected for later use in the 
experiment.

The majority of video clips were selected from movies and TV series, 
and detailed information on the materials was presented in supple
mentary 1. Besides, to investigate the neurophysiological responses of 
the most intense emotional feelings, we further recruited 5 volunteers 
(male = 3) to rate the emotional arousal. We marked a 20 s excerpt that 
elicited the most intense emotional experiences for each video clip. Only 
those clips that all participants recognized were employed as the final 
material of the formal experiments.

Participants were also instructed to evaluate the emotional intensity 
of four types of negative emotions (helplessness, anxiety, anger and fear) 
after each viewing at the naturalistic viewing task to ensure participants’ 
engagement during the movie viewing and validate the effectiveness of 
the clips in eliciting the intended emotions. Ratings were provided on a 
4-point Likert scale (0 = not strong at all, 3 = very strong). In the current 
study, participants watched three videos selected as emotion elicitation 
materials. However, only two of these videos successfully elicited anx
iety that was distinguishable from other negative emotions in the formal 
experiment. Consequently, only the neurophysiological recordings from 
these two videos were included in the final analysis. Video 1 was a 
footage from Shock Wave 2 (96:08 – 98:50), with a scene where a bomb 

Fig. 1. The behavioral paradigm of the study a) Partner’s emotional cue. This study involved participants interacting with three different partners (Partner 1, Partner 
2, and Partner 3) who exhibited varying levels of emotional volatility represented by their frequency of switching between happy(red bar) and sad (black bar) 
expressions. The diamond squares represent Reward probability, which means if there is a $10 offer in this trial (Reward = 1) or not (Reward = 0). The probability of 
offering the reward given a certain emotional cue was the same for all partners. The probability of getting a reward was 0.8 when the cue was happy, and the 
probability was 0.2 if the cue was sad. b) The social interaction task. Each trial included a proposal, two affective experience ratings (arousal vs. valence), and a 
reward probability rating. During the proposal period, participants interacted with a partner who made a $10 offer or not with different emotional expressions 
(happy vs. sad). After the interaction, they were asked to rate the two dimensions of their current affect state, including valence and arousal. Then they were required 
to predict the possibility of getting the offer in the subsequent trial. Participants would have to complete 30 trials of interaction with each partner, which means there 
were 90 trials in total.
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is about to explode. Video 2 was a footage from Ĺeon: The Professional 
(29:16 – 31:40), showing the scene where the girl asks the man to open 
the door.

2.4. ECG data acquisition and preprocessing

The ECG signals were recorded using BIOPAC MP160 (BIOPAC, 
USA), with an acquisition sampling rate of 2000 Hz. The preprocessing 
of the ECG data was conducted using the Python module Neurokit2 
Makowski et al. (2021), where the raw signal was resampled to 250 Hz, 
and the noise was reduced using the default method embedded in 
Neurolit2. The typical feature of the ECG signal is heart rate variability 
(HRV), which refers to the variability of the heartbeat cycle. Here, we 
extracted HRV for further analysis using the Neurolit2 function ecg rate 
based on the previously located cardiac peaks(R peaks) of the denoised 
ECG data. Then the hrv time function was utilized for HRV calculation. 
Two time-domain HRV features, MeanNN and SDNN, were used for 
further analysis, which referred to the mean and the standard deviation 
of the interval across cardiac peaks, respectively. According to previous 
literature in affective research, the time-domain features could be 
considered a good representation of the total variability of HR (Pham 
et al., 2021).

2.5. EEG data acquisition and preprocessing

The EEG recordings were conducted using the 64-channel Ag/AgCl 
electrodes fitted in the EEG cap (actiCap; BrainAmp; Brain Products), 
following the 10/20 system with the impedance of 10 kΩ or less, with a 
1000 Hz sampling rate (with a 0.1 to 100 Hz bandpass filter). The EEG 
data were initially referenced to the mid-frontal (FCz) electrode with the 
ground placed at the forehead (AFz) electrode site. During the proced
ure, participants were instructed to minimize head and body 
movements.

The EEG data were preprocessed using the open-accessed EEGLAB 
toolbox Delorme & Makeig (2004) in MATLAB script (R2020b, The 
MathWorks Inc.). For the convenience of analysis, the data was firstly 
downsampled to 250 Hz and were filtered with a low-pass filter of 50 Hz 
and a high-pass filter of 1 Hz. For noise reduction, the EEGLAB clean
rawdata plug-in was utilized for detecting and discarding the bad 
channels, with a maximum flatline duration of 5 s, a line noise criterion 
of 4 SD, and a minimum acceptable correlation with nearby channels of 
0.8. The removed channels were interpolated using the spherical 
method and were re-referenced to the average of all the channels Maffei 
et al. (2020).

Further, the data were corrected using the Artifact Subspace Re- 
construction method with the maximum acceptable windows of 0.5 s 
(SD =10) to minimize the artifacts further. To discard the artifact 
contributed by cardio activity, muscle movement, and ocular move
ment, the Independent component analysis (ICA) was conducted by the 
EEGLAB runica function. After the ICA, a semiautomatic manner was 
implemented to discard the artifact component using the ICAlabel plug- 
in (https://labeling.ucsd.edu/tutorial/overview) based on a component 
rejection threshold of 0.7 (Pion-Tonachini et al., 2019).

2.6. EEG feature extraction

The power spectral density (PSD) was calculated by integrating the 
energy within each frequency band (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 
8–12 Hz, beta: 12–30 Hz, and gamma: 30–45 Hz). PSD is a widely used 
frequency domain analysis to capture the EEG feature within each fre
quency subband, which was commonly used in the study of emotion (Hu 
et al., 2017) and affective computing (Zheng et al., 2014). To get the 
neurophysiological responses of capturing the most intense feelings of 
anxiety for the participants, we only extracted EEG features of the 20 s 
that elicited the strongest emotional experience from each original 
video, which were then averaged into the meantime course EEG data 

under VR-induced anxiety. The MNE module based on python was used 
to do the feature extraction (Gramfort et al., 2014). Specifically, we used 
the multitaper method from mne.time frequency.psd multitapper function 
to compute the PSD value for each channel(Sup. Fig. 2a). We then 
averaged the PSD values of frequency bands for later use (Sup. Fig. 2b), 
and obtained a data structure of 64×5*20 (channels*frequency band
s*time points) for each individual.

2.7. Statistical analysis

In this study, we first used repeated ANOVA and paired t-tests to 
analyze participants’ self-reported affective experiences and reward 
expectations across varying levels of the partner’s emotional volatility 
and emotional cues. Following this, we applied a general linear model 
(GLM) to predict participants’ affective experiences (specifically arousal 
and valence) based on factors such as reward, cue, and PE from the SIG, 
as well as EEG features we extracted. We also fitted individual GLMs for 
each participant to predict their affective experiences during the SIG 
using the same factors (reward, cue, and PE). This approach allowed us 
to assess the impact of both monetary and social rewards on each par
ticipant’s affective experience, which was then utilized in the calcula
tion of intersubject similarity analysis. Spearman correlation were used 
in the ISRSA analysis for accessing the association across different mo
dality of data.

2.8. Intersubject similarity analysis

The intersubject correlation (ISC) was used to measure the consis
tency of the neurophysiological responses to naturalistic stimuli across 
individuals (Hasson et al., 2004; Nastase et al., 2019). We did the ISC 
analysis on all EEG channels using Pearson correlation, which brought 
us 64×5 intersubject similarity matrices of the neural representation 
under VR-induced emotion.

The intersubject similarity analysis on sociability traits, affective 
experiences,PE, and model estimates was conducted using the Anna 
Karenina (AnnaK) method (Finn et al., 2020), which was designed for 
one-dimensional values that are unsuitable for correlation analysis, 
considering that brain responses tend to cluster for individuals at one 
extreme of a behavioral spectrum, while variability increases as one 
move towards the other end of the spectrum. More specifically, all high 
scorers are similar, but each low scorer is different in its own way, which 
may be more effective to use a metric that reflects the absolute position 
on the scale, such as the mean, the minimum of values from subject i and 
j, or the product of the mean and minimum. In this case, the AnnaK 
method could be an alternative to Euclidean distance, which was 
considered well-suited for unique uninterchangeable values (Finn et al., 
2020). In a detailed explanation, the original scores were converted into 
ranks. Then, for every pair of scores, the distance is determined by 
computing the mean of the sum of the absolute positions of the corre
sponding ranks of each subject. Specifically, if there are a total of n 
subjects, the distance between subject i and subject j is calculated using 
the equation presented below (eq.(1)): 

Dij = mean
(

rank(i) + rank(j)
nsubs

)

where D stands for the distance between subject i and subject j. The 
distance was calculated for each pair of subjects to get the ISM.

3. Results

3.1. Monetary rewards and social rewards can affect affective experience

3.1.1. The effect of cue, reward, and volatility on affective experience
We first examined the effect of cue on the measurements of affective 

experience and reward expectations. The paired sample t-test suggested 
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that all three measurements (arousal, valence and reward expectation) 
were significantly higher in the trials where the social partner presented 
a happy cue (arousal: t = 2.05,p < 0.05, valence: t = 7.35,p < 0.001, 
expectation: t = 7.75,p < 0.001, Fig. 2a). Besides, social partner’s 
reward offer on the current trial also plays a significant role on partic
ipants’ affective experience(arousal: t = 7.08,p < 0.001, valence: t =
12.116,p < 0.001). To examine the role of social partner’s emotional 
volatility, we used repeated measures ANOVA to see the potential dif
ferences across different emotional volatility conditions.Results showed 
that there was a significant effect of volatility on arousal (F = 3.11,p <
0.05, Fig. 2b). To further investigate the differences across conditions, 
we did a post-hoc t-test to compare the arousal score of each volatility 
condition. Results showed that participant’s arousal ratings are signifi
cantly higher in the low volatility condition compares to the high 
volatility condition(t = 2.24,p < 0.05, Fig. 2b left). Volatility plays a 
non-significant role in the ratings of valence across conditions.

We also examined the relationship between affective experience and 
prediction error (PE = Reward - Prediction) in facing different cues. 
According to the Pearson correlation analysis, it was observed that both 
arousal and valence exhibit a negative correlation with prediction error 
(PE), regardless of whether the participant’s cue is happy or sad (Sup. 
Fig. 3). To better understand the results, we calculated the absolute 
value of PE using the same analysis. The absolute PE negatively corre
lates with arousal and valence only when the partner presented a happy 
cue(Sup. Fig. 4).

3.1.2. Both arousal and valence can be predicted by reward, cue and PE 
across conditions of volatility

We then fitted the regression models to investigate how the mone
tary factors (monetary reward and PE) and the social factors (cue and 
volatility) affect participants’ valence and arousal during social inter
action. Results revealed that, the reward for the current trial was a 

positive contributor for the prediction for both arousal (β = 43.766,t =
5.397,p < 0.001, see Table 1) and valence (β = 32.639,t = 4.211,p <
0.001, see Table 2). Regarding the effect of cue and PE, there was sig
nificant main effect of cue (β = 27.01,t = 3.603,p < 0.001) and PE (β =
− 0.291,t = − 2.53,p < 0.05) on valence, but not arousal.

Regarding the effect of volatility, results showed significant inter
action effect between volatility and cue on arousal. Volatility played a 
divergent effect on arousal when facing different social partner’s 
emotional cue.(interaction β = 16.316,t = 5.054,p < 0.001, see Table 2). 
Individuals had higher arousal scores in the high volatility condition 
compared to the low when the partner’s cue was happy, but had lower 
arousal scores when facing the sad cue as the social partner changed the 
emotional cues more frequently (Fig. 2c).

We have also observed the interaction effect across the effect of 
reward and PE in both arousal(β = − 0.624, t = − 3.001, p < 0.01, see 
Table 1) and valence(β = − 0.696, t = − 3.504, p < 0.001, see Table 2). 
PE had a stronger negative effect on valence when the emotional cue and 
reward offer of the social partner were congruent (Fig. 2e, g). The effect 
of PE on arousal also shared a weaker but similar pattern (Fig. 2d, f).

3.2. Anxiety EEG features can predict affective experience during social 
interaction

We take the individuals’ affective experiences and the neurophysi
ological responses under VR-induced anxiety together to investigate 
how people’s EEG features can predict their real-life behavior. We firstly 
examined the effect of emotion elicitation in VR. Repeated ANOVA were 
used to investigate if the films can elicit the certain emotion of anxiety 
rather than other negative emotions (F = 19.8,p < 0.001, Sup. Fig. 5). 
The Tukey’s post hoc test results showed that the anxiety induced from 
the video was differentiated from emotion of anger (t = 5.14,p < 0.001) 
and fear (t = 3.86,p < 0.01).

Fig. 2. Behavioral results General behavioral analysis across the manipulated conditions and participants’ responses. a) Arousal, valence and the reward expectation 
were all significantly higher when the social partner facial cue was happy compared to the sad cue. b) Participant’s arousal ratings are significantly higher in the low 
volatility condition compares to the high volatility condition. Volatility plays non-significant role in the ratings of valence across conditions.c) There is a significant 
moderating role of volatility on cue predicting arousal. d)-g)3-way interaction of PE’s effect on valence and arousal in different levels of cue and reward.
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Then we included the EEG PSD features into the behavioral model to 
find possible connections (Sup. Fig. 2. 5 scalp regions were selected for 
the regression. AF3, AF7, F1, F3, F5, F7, FC3, and FC5 were selected as 
the left frontal channels. AF4, AF8, F2, F4, F6, F8, FC4, and FC6 were 
selected as the right frontal channels. FC1, FC2, C1, Cz, C2, and CPz were 
selected as the central channels. CP3, CP5, P1, P3, P5, P7, PO3, and PO7 
were selected as the left parietal channels. CP4, CP6, P2, P4, P6, P8, 
PO4, and PO8 were selected as the right parietal channels (Sup. Fig. 6). 
Results showed that the EEG features had divergent patterns of contri
bution to arousal and valence. With the other factors controlled, EEG 
features had a generally significant contribution to arousal with no 
interaction effect of cue (see Table 3), whereas the EEG features had few 
significant main effects on valence during the interaction, but significant 
interaction effect of cue and the Anxiety EEG features were detected (see 
table 4, only interaction terms of EEG features was included, see Sup
plementary for the full table). Specifically, the interaction term of cue 
and frontal features of both sides were all significant contributors in the 
model predicting valence controlling for the main effect of PE, cue, 
reward and volatility.

3.3. Individual variation during the interaction can be explained by 
similarities of sociability traits neurophysiological responses under VR

To address the second question (Q2) concerning the role of anxiety 
during social interaction, we first used the IS-RSA method to see the 
relationship across the intersubject similarity matrices (ISM) of the af
fective experiences and PE for each participant and their psychometric 
sociability scores using Pearson correlation (Fig. 3a, lower path). For the 
analysis of trait empathy, results showed that the similarity of the ab
solute value of PE was positively correlated with both empathetic 
concern (EC) (r = 0.119,p < 0.01) and personal distress (PD) (r = 0.119, 
p < 0.01). The similarity of valence was positively correlated with EC (r 
= 0.191,p < 0.001), and the similarity of PE was positively correlated 
with PD (r = 0.091,p < 0.05). Regarding the connection across in
dividuals’ affective experiences and their mentalizing ability, results 
also showed that the estimates of both arousal (r = 0.430,p < 0.001) and 
valence (r = 0.167,p < 0.001) were connected with the self-other 
mentalizing ability (SO).

To further investigate the role of emotional volatility of the social 

Fig. 3. The flowchart of the IS-RSA in the current study. a) inter-subject similarity matrices(ISM) were calculated for three modalities of measurements. (1) 
Neurophysiological ISM under VR-induced anxiety, where 64 channels *5 frequency bands, 320 matrices in total for the EEG features, and 1 matrice of hrvm features 
for the ECG; (2) Behavioral measure estimates ISM and behavioral model estimates ISM. We calculated the arousal, valence, PE, and absolute PE, total 4 matrices. For 
behavioral model estimates, there are 2 predictors (Cue vs. PE)*2 respondents (Arousal vs. Valence)*2 volatility level (high vs. low), 8 matrices in total; and (3) Trait 
measurement, mentalizing (SO: self-other) and empathy (empathic concern, EC; and personal distress, PD), 3 matrices in total. After getting all the matrices, we did 
the Spearman correlation analysis for each Neurophysiological ISM with each behavioral model estimates ISM (blue arrow) to see the association between in
dividual’s anxiety pattern and affective patterns during social interaction. Spearman correlation analysis was also performed for each behavioral measures ISM with 
each sociability ISM (pink arrow) to see the association between individual’s sociability and affective responses during social interaction. b) the correlation matrix 
represents the Pearson correlation results across the similarities on affective experience and PE RSMs and the sociability trait RSMs. c) The most salient correlation 
between the sociability similarities and the similarities on affective experience and PE during the SIG. Participant’s similarity on SO is significantly positively 
correlated with the individual’s similarity on their arousal levels during the task. d) Model estimates of reward on affective experience (AE) for each individual. e) 
Model estimates of cue on affective experience for each individual. f) Model estimates of PE on AE for each individual.
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partner during the interaction, we fitted two separate regression models 
on different levels of the partner’s volatility (low vs. high). Repeated 
ANOVA indicated that there is no significant difference between the 
model estimates on valence between two volatility conditions (Fig. 3d- 
f). However, the data distribution patterns indicated that there might be 
a considerable variation among participants regarding the role played 
by reward, cue and PE on arousal and valence. To further investigate the 
role of anxiety during social interaction and the individual differences 
across those processes, we used IS-RSA to identify the possible source of 
those variations across individuals (Fig. 3a, upper path).

Following our hypothesis, the anxiety neural similarity can explain 
the individual variation in arousal models during social interaction, 
especially in the estimates of cue predicting arousal and valence (Figs. 4 
and 5). For the results of arousal, the correlations were stronger in the 
high volatility condition compared to the low volatility condition. The 
most salient association was found in the beta band activity of anxiety 

Table 1 
Arousal can be predicted by reward, cue and PE across conditions of volatility.

Model 1 Prediction of Arousal 
Arousal ~ β1PE + β2Cue + β3Reward + β4Volatility + β5Cue*Volatilit +
β6Reward*Cue + β6Reward*PE+ β7PE*Cue + β8Reward*PE*Cue + ε

Variable Std. Est. SE t p

PE − 1.400 0.12 − 4.588 0.182
Cue:
1 – 0 0.426 7.849 0.997 0.319
Reward:
1 – 0 2.142 8.11 5.397 <0.001***
Volatility:
1 – 0 − 0.198 3.239 − 1.278 0.202
2 – 0 − 0.501 3.515 − 2.989 0.003***
Cue * Volatility:
(1 – 0) * (1 – 0) 0.255 4.614 1.158 0.247
(1 – 0) * (2 – 0) 0.799 5.054 3.228 <0.001***
Reward * Cue:
(1 – 0) * (1 – 0) 0.444 11.963 0.993 0.321
Reward * PE:
(1 – 0) * PE 0.691 0.147 1.854 0.064
Cue * PE:
(1 – 0) * PE 0.687 0.15 1.804 0.072
Reward * Cue * PE:
(1 – 0) * (1 – 0) * PE − 1.581 0.208 − 3.001 0.003**

Std. Est. refers to the standardized estimates of the predictors,.
SE refers to the standard error of the estimates (the same below).

Table 2 
Valence can be predicted by reward, cue and PE across conditions of volatility.

Model2: Prediction of valence 
Valence ~ β1PE + β2Cue + β3Reward + β4Volatility + β5Cue*Volatility +
β6Reward*Cue + β6Reward*PE + β7PE*Cue + β8Reward*PE*Cue + ε

Variable Std. Est. SE t p

pe − 0.621 0.115 − 2.53 0.012*
cue:
1 – 0 1.118 7.497 3.603 <0.001***
reward:
1 – 0 1.331 7.751 4.211 <0.001***
Volatility:
1 – 0 0.094 3.085 0.761 0.447
2 – 0 − 0.058 3.351 − 0.429 0.668
Volatility * cue:
(1 – 0) * (1 – 0) − 0.045 4.408 − 0.252 0.801
(2 – 0) * (1 – 0) 0.280 4.825 1.444 0.149
PE * cue:
PE * (1 – 0) 0.454 0.143 1.482 0.139
reward * cue:
(1 – 0) * (1 – 0) 1.047 11.434 2.5 0.013*
reward * PE:
(1 – 0) * PE 0.260 0.14 0.869 0.385
reward * cue * PE:
(1 – 0) * (1 – 0) * PE − 1.485 0.199 − 3.504 <0.001***

Table 3 
Arousal can be predicted by the VR-induced anxious EEG features controlling for 
Cue, PE, and Volatility.

Model 3: Prediction of arousal using the EEG features 
Arousal ~ β1PE + β2Cue + β3Reward + β4Volatility + Σ29

i=5βi EEG features + ε

Variable Std. Est. SE t p

PE − 0.403 0.0472 − 8.54 <0.001***
Cue 1 – 0 0.306 1.5279 4.31 <0.001***
Reward 1 – 0 1.074 4.9209 4.69 <0.001***
Volatility (1 – 0) − 0.098 1.8729 − 1.12 0.262
Volatility (2 – 0) − 0.168 1.8617 − 1.94 0.053
alpha lF 1.063 5.6481 1.74 0.082
alpha rF − 8.618 10.1897 − 7.88 <0.001***
alpha c 4.333 6.2851 4.82 <0.001***
alpha lP − 5.150 8.3083 − 5.28 <0.001***
alpha rP 8.231 10.5158 6.41 <0.001***
beta lF − 11.371 11.1299 − 8.54 <0.001***
beta rF 6.124 9.3862 5.66 <0.001***
beta c 4.391 7.5305 4.58 <0.001***
beta lP 12.322 13.3471 8.02 <0.001***
beta rP − 9.795 11.6637 − 7.52 <0.001***
delta lF 3.221 4.9317 8.36 <0.001***
delta rF − 6.247 8.7665 − 8.72 <0.001***
delta c 0.835 5.1619 1.81 0.071
delta lP 2.608 8.0789 4.38 <0.001***
delta rP − 0.869 7.3127 − 1.41 0.160
gamma lF 11.972 9.1202 9.45 <0.001***
gamma rF − 7.063 6.9139 − 7.71 <0.001***
gamma c − 1.405 4.5303 − 3.11 0.002**
gamma lP − 4.651 4.8849 − 8.35 <0.001***
gamma rP 1.790 3.6684 5.11 <0.001***
theta lF − 2.444 6.5006 − 5.19 <0.001***
theta rF 9.146 14.7262 8.02 <0.001***
theta c − 3.229 9.169 − 3.61 <0.001***
theta lP − 2.109 10.9978 − 2.54 0.012**
theta rP − 2.850 12.8625 − 2.66 0.008**

Table 4 
Valence can be predicted by the VR-induced anxious EEG feature controlling for 
Cue, PE, and volatility.

Model 4: Prediction of valence using the EEG features 
Valence ~ β1PE + β2Cue + β3Reward + β4Volatility +Σ30

i=5βi EEG features Σ45
i=31βi EEG 

features*Cue + ε

Variable Std. Est. SE t p

PE − 0.084 0.0469 − 0.8496 0.396
Cue: 1 – 0 1.077 103.3259 7.1383 <0.001***
Reward: 1 – 0 0.829 4.8842 4.3023 <0.001***
Volatility: (1 – 0) 0.029 1.8384 0.3932 0.694
Volatility: (2 – 0) 0.021 1.8232 0.2975 0.766
alpha lF * cue 2.274 11.0854 2.2335 0.026*
alpha rF * cue − 9.179 19.715 − 5.105 <0.001***
alpha c * cue 5.024 12.2856 3.3534 <0.001***
alpha lP * cue − 8.669 16.214 − 5.3485 <0.001***
alpha rP * cue 9.797 20.5946 4.5748 <0.001***
beta lF * cue − 14.381 21.842 − 6.4795 <0.001***
beta rF * cue 10.130 18.4246 5.6271 <0.001***
beta c * cue 2.994 14.5633 1.8956 0.059
beta lP * cue 14.814 26.0866 5.805 <0.001***
beta rP * cue − 10.640 22.7116 − 4.9299 <0.001***
delta lF * cue 3.680 9.5158 5.8361 <0.001***
delta rF * cue − 5.082 16.8453 − 4.3468 <0.001***
delta c * cue 0.104 10.0844 0.1362 0.892
delta lP * cue 1.976 15.8157 1.9961 0.047*
delta rP * cue − 1.092 14.3241 − 1.0629 0.289
gamma lF * cue 14.826 17.8478 7.0479 <0.001***
gamma rF * cue − 10.926 13.5652 − 7.1572 <0.001***
gamma c * cue − 0.241 8.7762 − 0.3237 0.746
gamma lP * cue − 5.426 9.5271 − 5.8883 <0.001***
gamma rP * cue 1.490 7.1464 2.5677 0.011*
theta lF * cue − 3.321 12.5807 − 4.2957 <0.001***
theta rF * cue 7.345 28.2883 3.9544 <0.001***
theta c * cue − 1.760 17.8452 − 1.1901 0.235
theta lP * cue 0.036 21.3951 0.0264 0.979
theta rP * cue − 4.108 25.1124 − 2.3086 0.022*
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with the effect of the cue on arousal in the high volatility condition. 
Salient electrodes were globally correlated with the estimates of cue, 
including FT10 (r = 0.194,p < 0.01), AF7 (r = 0.140,p < 0.01), and F1 (r 
= 0.125,p < 0.01) of the frontal channels, C3 (r = 0.169,p < 0.01), CP3 
(r = 0.198,p < 0.01), and C1 (r = 0.165,p < 0.01) of the central channels, 
and P7 (r = 0.174,p < 0.01), P4 (r = 0.156,p < 0.01), and Pz (r = 0.166,p 

< 0.01) of the parietal channels.
About the valence model estimates (Fig. 5), the correlation topog

raphy displayed a stronger significant correlation pattern compared to 
the estimation of arousal. The major association was found in the theta, 
alpha, and gamma of the frontal channels, and the global beta band 
activity of anxiety with the effect of cue on arousal in both low and high 

Fig. 4. EEG topographies representing the IS-RSA results between arousal estimates and the EEG similarity of five frequency bands. Results mainly showed that an 
individual’s similarity in the Theta, Beta, and Gamma EEG frequencies during anxiety was significantly correlated with the effect of social partner’s cue on in
dividual’s arousal in the high volatility condition.
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volatility conditions. Specifically, the saliently significant channels in
cludes Fp1 (low: r = 0.217,p < 0.01; high: r = 0.150,p < 0.01), FT9 (low: 
r = 0.190,p < 0.01; high: r = 0.178,p < 0.01), and FT8 (low: r = 0.142,p 
< 0.01; high: r = 0.117,p < 0.05) in the theta band; Fp1(low: r = 0.192,p 
< 0.01; high: r = 0.205,p < 0.001), FC5 (low: r = 0.151,p < 0.01; high: r 
= 0.198,p < 0.001), and AF7 (low: r = 0.181,p < 0.01; high: r = 0.200,p 

< 0.001) in the alpha band; and C1 (low: r = 0.195,p < 0.01; high: r =
0.167,p < 0.001), P2 (low: r = 0.191,p < 0.01; high: r = 0.203,p <
0.001), and FC2 (low: r = 0.181,p < 0.01; high: r = 0.200,p < 0.001) in 
the beta band. To further investigate the relationship between the sim
ilarity in physiological responses to anxiety and the similarity in affec
tive experience patterns during social interaction, we calculated the 

Fig. 5. EEG topographies representing the IS-RSA results between valence estimates and the EEG similarity of five frequency bands. Results mainly showed that 
individual’s similarity in the Theta, Beta, and Gamma EEG frequencies during anxiety was significantly correlated with the effect of the social partner’s cue on the 
individual’s arousal in both low and high-volatility conditions.
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mean interval between cardiac peaks as the HRV feature (HRVm). We 
then assessed the similarity between each pair of participants by 
measuring the distance between their respective HRV features (Fig. S7 
a). Based on the ISRSA results of individuals’ HRVm features and 
behavioral estimates, the significantly positive Spearman correlations 
were only found with the cue estimates on arousal in the high volatility 
condition (r = 0.112,p < 0.01, Fig. S7 d) and the cue estimates on 
valence in the low volatility condition (r = 0.114,p < 0.01, Fig. S7 e), 
which is in line with the EEG results that only the effect of the cue on 
affective experience was associated with the anxiety neuralphysiological 
patterns.

4. Discussions and conclusions

The complex nature of individuals’ affective experiences during so
cial interaction is subject to various factors that influence their mani
festation. Through our empirical findings from the social interaction 
task, it has become evident that these experiences are influenced by 
critical factors like monetary rewards and learning accuracy. Our results 
also aligns with the previous hypothesis that individuals’ neural re
cordings under anxiety can be considered as an idiosyncratic neural 
fingerprint for each individual that can be associated with their affective 
experience during social interaction.Furthermore, social factors such as 
the emotional cues and emotional volatility of an individual’s partner 
play a significant role in shaping affective experiences. Meanwhile, 
controlling for other factors, the effect of a partner’s emotional cue on 
individuals’ affective experience can be specifically linked to their 
neural pattern of anxiety. This suggests that the anxiety component 
during social interaction might be specifically associated with the 
partner’s emotional cue, rather than their own reward or PE during 
social interaction.

In the present study, we created a framework to explore the associ
ation between individuals’ neural responses of anxiety in a VR envi
ronment and their affective experiences during subsequent social 
interactions. The VR-induced EEG features of anxiety can be considered 
as stable features of individuals, which captured their neural pattern of 
anxiety. As such, this approach provides a valid alternative to the con
ventional self-report measurements of anxiety during social interactions, 
allowing the study of individuals’ affective experiences while interact
ing with social partners without explicitly introducing the anxiety to the 
participants.

4.1. Individuals’ affective feeling can be influenced by both monetary 
reward and social reward

In social interactions, individuals can learn from emotional feedback 
that may consist of both positive and negative experiences, each having 
the potential to influence their affective state. It has also been estab
lished that both monetary and social rewards are powerful drivers of 
individuals’ subjective feelings. Through exposure to these stimuli, in
dividuals gain insight into the responses of others and are further 
influenced by how these responses make them feel (Izuma et al., 2008; 
Pessiglione et al., 2008). While there are common neural responses in 
the striatum to both social and monetary rewards, some differences have 
been observed. For example, Izuma et al. (2008) observe a slightly 
stronger response to social rewards in the ventral striatum compared to 
monetary rewards, indicating some level of divergence in processing in 
the role played by the two kinds of rewards (Izuma et al., 2008). Within 
the dimension of monetary factors, PE also played a critical role in 
predicting affective experience, aligning with the previous study sug
gesting that the process of learning contributes a lot to momentary 
subjective well-being compared to the immediate experience of reward 
(Blain and Rutledge, 2020; Rutledge et al., 2014).

Meanwhile, the effect of the partner’s emotional volatility, or sta
bility, presented a divergent pattern of effect on arousal when facing 
different social partner’s emotional cues. In the high volatility condition, 

the arousal ratings were notably lower when participants were pre
sented with the sad cue and significantly higher when the cue was 
happy. These results suggested that the presented cue has a larger effect 
when the social environment is unpredictable. Previous studies already 
found that new information will be of higher weight when individuals 
perceived an increase in environmental uncertainty (Behrens et al., 
2007; Browning et al., 2015; Aylward et al., 2019; Lamba et al., 2020). 
Meanwhile, people in an anxious state will exhibit impaired adaptive 
learning on the contingency volatility (Gagne et al., 2020; Lamba et al., 
2020). These results can be considered as an extension of the previous 
studies, which suggest that new information not only has more weight 
on their decision-making processes but also on their affective experi
ences. Generally, our results were consistent with the previous studies 
that both monetary (reward, and RPE) and social factors (partner’s cue, 
and partner’s emotional volatility) can affect the affective experiences in 
social interaction (Kao et al., 2023; Rutledge et al., 2014).

4.2. Affective experience during social interaction can be predicted by 
individuals’ anxious EEG features

Arousal and valence track different aspects of affective experience in 
social interaction (FeldmanHall and Heffner, 2022). Our results sug
gested that arousal can specifically track the partners’ emotional vola
tility in social reward contingencies. Controlling for the monetary and 
social rewards, the results also suggested that extracted anxiety EEG 
features presented different contribution patterns on arousal and 
valence. With the other factors controlled, anxiety EEG features signif
icantly contributed to arousal during the social context.

Anxiety manifests differently across individuals, typically charac
terized by heightened arousal and negatively skewed valence 
(FeldmanHall and Heffner, 2022; Grupe and Nitschke, 2013; Kashdan 
and Roberts, 2007). In our study, participants displayed consistently 
high arousal during the social interaction game, largely independent of 
the partners’ emotional cues. However, valence ratings showed clear 
variability, with higher ratings for happy cues and significantly lower 
ratings for sad cues. This indicates that negative social rewards can 
trigger anxiety and other negative emotions, highlighting the impact of 
emotional cues on affective experiences during social interactions. These 
findings are consistent with previous evidence that social rewards 
strongly influence affective states during social engagement (Heffner 
and FeldmanHall, 2022; Bhanji and Delgado, 2014; D. Wang et al., 
2020).

Divergent directions of EEG contributions were also detected from 
the regression models. The early studies revealed greater left frontal 
activation during positive affective states, while the right frontal region 
showed greater activation during negative affective states (Davidson, 
1992; Tomarken et al., 1992; Coan and Allen, 2004). More recent studies 
have further shown that frontal EEG asymmetry is not only a stable 
indicator of affective style but also a dynamic marker of emotional 
processing in various contexts (Allen et al., 2017; Koller-Schlaud et al., 
2020; Neuhaus et al., 2023).

Meanwhile, prior studies detected that individuals with greater 
resting-state left frontal activation demonstrated higher positive and 
lower negative affect levels, indicating a positive affective style. In 
contrast, those with greater resting-state right frontal activation 
exhibited lower positive and higher negative affect levels, exhibiting a 
negative affective style (WHEELER et al., 2007). Studies above sug
gested that the left and right frontal activities are sensitive to different 
directions of individual affective experience. Consistent with the pre
vious findings, we also detected a divergent direction of contribution on 
the arousal of the anxiety frontal EEG features in all five frequency 
bands, which suggested that the task-free anxiety patterns in the left and 
right front channels also encoded different affective components.
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4.3. The emergence of anxiety during social interaction might be 
specifically associated with social reward instead of monetary reward

Our findings indicate that individuals who shared similar neural 
patterns during VR-induced anxiety also shared a similar effect of cue on 
their affective experience during social interaction. However, this 
pattern was not observed when it comes to the effect of PE and reward, 
which constitute the monetary factors in our prediction model. Previous 
studies have identified the role of both monetary reward and social 
reward in individual’s affective experience during decision making 
(Sanfey et al., 2003; Kao et al., 2023; Rutledge et al., 2014). Building 
upon this, the current results further advances this understanding by 
revealing a specific association between the emergence of anxiety and 
social rewards within the mixed components of affective experience.

The ISRSA results demonstrate a positive correlation between the 
similarity of individuals’ anxietyrelated neural patterns and the simi
larity of their affective responses to social cues. Specifically, widely 
significant correlation patterns between the anxiety EEG features and 
the effect of the cue on valence in both low and high-volatility condi
tions, which suggests that valence might not be as sensitive to the sta
bility of contextual cues as arousal. The prediction of cues on valence 
can be globally associated with the anxiety pattern of theta, alpha, beta, 
and gamma band frequencies. But the global significant correlation was 
only found in the beta band frequency and the prediction of the cue on 
arousal. Prior research indicates that the majority of negative emotions 
are aligned with the negative valence dimension, which can be more 
effectively discriminated by their variation in the intensity of arousal 
levels (Heffner and FeldmanHall, 2022; Kashdan and Roberts, 2007). 
This is also in line with previous MEG and intracranial EEG research that 
beta band activity is closely linked to negative emotions, including fear 
and anxiety (Schneider et al., 2018; Lee et al., 2024). Given these in
sights, our results further indicate that beta band EEG features may serve 
as a reliable neural marker for anxiety. This marker can detect the in
fluence of cues on both arousal and valence during social interactions, 
providing a more nuanced understanding of the neural mechanisms 
underlying anxiety in the social context.

This finding underscores the unique influence of social rewards on 
anxiety, which can distinguish it from the impact of monetary rewards in 
decision-making scenarios. This results may put further evidence to 
support the cognitive perspective regarding the emergence of anxiety. 
From a cognitive perspective, this result supports the idea that social 
anxiety is rooted in negative thought patterns and cognitive biases that 
individuals experience during social interactions (Beck, 1979; Beck and 
Dozois, 2011). These biases include selective attention to perceived 
threats, overestimation of the probability and severity of negative social 
outcomes, and biased interpretation of ambiguous social cues. Cognitive 
biases reinforce and maintain anxious thoughts and feelings for socially 
anxious individuals (Clark and Beck, 2010; Beck, 1979).

Understanding how anxiety developed in the social context is 
important for the detection and intervention of social anxiety symptoms. 
Anxiety merged during social interaction can have a negative effect on 
social functioning (Stein and Stein, 2008; Clark and Beck, 2010). Taking 
the cognitive perspective, individuals prone to anxiety often have 
negatively biased beliefs, which can increase the likelihood of making 
erroneous judgments (Beck, 1979; Clark and Beck, 2010). Meanwhile, 
anxiety has been characterized as intolerance of uncertainty (Bishop, 
2007; Aylward et al., 2019), which echoes studies identified that 
impaired adaptive learning abilities were prevalent in anxious in
dividuals (Lamba et al., 2020; Hein et al., 2021).

4.4. Implications on anxiety detection and VR

Our findings suggest a noteworthy distinction between the impact of 
social and monetary rewards on individuals’ affective experiences dur
ing social interaction, particularly with their correlation with neural 
responses under anxiety. This underscores the unique role that social 

interactions play in shaping individuals’ emotional experiences, which 
emphasises the importance of social rewards in affective studies.

This results contribute to the understanding of affective experiences 
during social interaction, and also hold implications for the computa
tional aspects of human affection, particularly in the context of anxiety. 
The distinctive correlation between social rewards and neural responses 
under anxiety highlights a critical avenue for the development of 
computational models that aim to capture and predict emotional states 
in individuals during social interactions. The emphasis on social rewards 
as a significant factor influencing anxiety-related neural patterns can be 
important for creating more advanced and context-aware computational 
models. The field of affective computing has seen prevalent applications 
in sensing and interpreting human emotions (Cambria et al., 2017; 
Saxena et al., 2020). Integrating these findings into computational 
frameworks can enhance the accuracy and reliability of algorithms 
designed to detect and understand anxiety in real-time, especially within 
the dynamic and complex context of social interactions.

The unique insights from our study also includes the potential use of 
VR as a powerful tool in the study of human affection, specifically 
anxiety. Creating more intuitive and immersive VR environments may 
serve as a controlled and ecologically valid platform to study human 
affective experience. Our study provides a novel dataset using VR as 
emotion stimuli for the recording of individuals’ neural fingerprint of 
strong emotional experience. Existing dataset combining VR and EEG on 
studying human emotion is still rare. Limited previous datasets pre
dominantly focused on positive and negative emotions (Yu et al., 2022), 
our current study uniquely focuses on anxiety, which can serve as a 
valuable supplement to the existing literature. This promotes the use of 
VR in affective computing research, providing a unique opportunity to 
bridge the gap between controlled experimental settings and realworld 
social interactions.

4.5. Limitations, and future direction

The present study, while offering valuable insights, has certain lim
itations that need consideration in future research endeavors. First and 
foremost, a more effective validation of the brain-behavior association 
could be achieved by incorporating neural recordings during the course 
of social interactions. The acquisition of such data promises a holistic 
understanding of the findings while lending credence to the conclusions 
of the study. Drawing inspiration from previous literature, two viable 
paths could be pursued: enhancing the statistical power through an 
increased sample size or zeroing in on specificities that augment effect 
sizes Gratton et al. (2022). To further consolidate the association be
tween anxiety-related neural responses and an individual’s affective 
experience during social interaction, it is imperative that future research 
explores diverse strategies to bolster the reliability of brain-behavior 
correlations. Another aspect worth exploring involves the temporal 
dynamics of EEG features during social interaction tasks, which may 
shed light on the emergence and proliferation of social anxiety. In lieu of 
solely focusing on frequency features, the temporal analysis can poten
tially demystify the subtle distinctions among varying affective experi
ences during social engagements. By incorporating this approach, we 
can strive to unravel the complexities accompanying social anxiety and 
its tangible manifestation in real-time social interactions.

Take together, individuals’ affective experience during social inter
action can be predicted by both monetary reward and social reward. 
Specifically, both arousal and valence can be predicted by reward, cue, 
and PE across conditions of partner’s emotional volatility, where arousal 
is more sensitive to the partner’s emotional volatility. Affective experi
ence during social interaction can be predicted by individuals’ anxious 
EEG features, where a moderating effect of cue on the prediction of 
valence was observed. Individuals who shared similar neural patterns 
during VR-induced anxiety shared a similar effect of cue on their af
fective Controlling for other factors, social reward holds a unique 
contribution to the anxiety component of individuals’ mixed affective 
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